mirror of
https://github.com/fawney19/Aether.git
synced 2026-01-08 18:52:28 +08:00
549 lines
19 KiB
Python
549 lines
19 KiB
Python
"""
|
||
Gemini 格式转换器
|
||
|
||
提供 Gemini 与其他 API 格式(Claude、OpenAI)之间的转换
|
||
"""
|
||
|
||
from typing import Any, Dict, List, Optional
|
||
|
||
|
||
class ClaudeToGeminiConverter:
|
||
"""
|
||
Claude -> Gemini 请求转换器
|
||
|
||
将 Claude Messages API 格式转换为 Gemini generateContent 格式
|
||
"""
|
||
|
||
def convert_request(self, claude_request: Dict[str, Any]) -> Dict[str, Any]:
|
||
"""
|
||
将 Claude 请求转换为 Gemini 请求
|
||
|
||
Args:
|
||
claude_request: Claude 格式的请求字典
|
||
|
||
Returns:
|
||
Gemini 格式的请求字典
|
||
"""
|
||
gemini_request: Dict[str, Any] = {
|
||
"contents": self._convert_messages(claude_request.get("messages", [])),
|
||
}
|
||
|
||
# 转换 system prompt
|
||
system = claude_request.get("system")
|
||
if system:
|
||
gemini_request["system_instruction"] = self._convert_system(system)
|
||
|
||
# 转换生成配置
|
||
generation_config = self._build_generation_config(claude_request)
|
||
if generation_config:
|
||
gemini_request["generation_config"] = generation_config
|
||
|
||
# 转换工具
|
||
tools = claude_request.get("tools")
|
||
if tools:
|
||
gemini_request["tools"] = self._convert_tools(tools)
|
||
|
||
return gemini_request
|
||
|
||
def _convert_messages(self, messages: List[Dict[str, Any]]) -> List[Dict[str, Any]]:
|
||
"""转换消息列表"""
|
||
contents = []
|
||
for msg in messages:
|
||
role = msg.get("role", "user")
|
||
# Gemini 使用 "model" 而不是 "assistant"
|
||
gemini_role = "model" if role == "assistant" else "user"
|
||
|
||
content = msg.get("content", "")
|
||
parts = self._convert_content_to_parts(content)
|
||
|
||
contents.append(
|
||
{
|
||
"role": gemini_role,
|
||
"parts": parts,
|
||
}
|
||
)
|
||
return contents
|
||
|
||
def _convert_content_to_parts(self, content: Any) -> List[Dict[str, Any]]:
|
||
"""将 Claude 内容转换为 Gemini parts"""
|
||
if isinstance(content, str):
|
||
return [{"text": content}]
|
||
|
||
if isinstance(content, list):
|
||
parts: List[Dict[str, Any]] = []
|
||
for block in content:
|
||
if isinstance(block, str):
|
||
parts.append({"text": block})
|
||
elif isinstance(block, dict):
|
||
block_type = block.get("type")
|
||
if block_type == "text":
|
||
parts.append({"text": block.get("text", "")})
|
||
elif block_type == "image":
|
||
# 转换图片
|
||
source = block.get("source", {})
|
||
if source.get("type") == "base64":
|
||
parts.append(
|
||
{
|
||
"inline_data": {
|
||
"mime_type": source.get("media_type", "image/png"),
|
||
"data": source.get("data", ""),
|
||
}
|
||
}
|
||
)
|
||
elif block_type == "tool_use":
|
||
# 转换工具调用
|
||
parts.append(
|
||
{
|
||
"function_call": {
|
||
"name": block.get("name", ""),
|
||
"args": block.get("input", {}),
|
||
}
|
||
}
|
||
)
|
||
elif block_type == "tool_result":
|
||
# 转换工具结果
|
||
parts.append(
|
||
{
|
||
"function_response": {
|
||
"name": block.get("tool_use_id", ""),
|
||
"response": {"result": block.get("content", "")},
|
||
}
|
||
}
|
||
)
|
||
return parts
|
||
|
||
return [{"text": str(content)}]
|
||
|
||
def _convert_system(self, system: Any) -> Dict[str, Any]:
|
||
"""转换 system prompt"""
|
||
if isinstance(system, str):
|
||
return {"parts": [{"text": system}]}
|
||
|
||
if isinstance(system, list):
|
||
parts = []
|
||
for item in system:
|
||
if isinstance(item, str):
|
||
parts.append({"text": item})
|
||
elif isinstance(item, dict) and item.get("type") == "text":
|
||
parts.append({"text": item.get("text", "")})
|
||
return {"parts": parts}
|
||
|
||
return {"parts": [{"text": str(system)}]}
|
||
|
||
def _build_generation_config(self, claude_request: Dict[str, Any]) -> Optional[Dict[str, Any]]:
|
||
"""构建生成配置"""
|
||
config: Dict[str, Any] = {}
|
||
|
||
if "max_tokens" in claude_request:
|
||
config["max_output_tokens"] = claude_request["max_tokens"]
|
||
if "temperature" in claude_request:
|
||
config["temperature"] = claude_request["temperature"]
|
||
if "top_p" in claude_request:
|
||
config["top_p"] = claude_request["top_p"]
|
||
if "top_k" in claude_request:
|
||
config["top_k"] = claude_request["top_k"]
|
||
if "stop_sequences" in claude_request:
|
||
config["stop_sequences"] = claude_request["stop_sequences"]
|
||
|
||
return config if config else None
|
||
|
||
def _convert_tools(self, tools: List[Dict[str, Any]]) -> List[Dict[str, Any]]:
|
||
"""转换工具定义"""
|
||
function_declarations = []
|
||
for tool in tools:
|
||
func_decl = {
|
||
"name": tool.get("name", ""),
|
||
}
|
||
if "description" in tool:
|
||
func_decl["description"] = tool["description"]
|
||
if "input_schema" in tool:
|
||
func_decl["parameters"] = tool["input_schema"]
|
||
function_declarations.append(func_decl)
|
||
|
||
return [{"function_declarations": function_declarations}]
|
||
|
||
|
||
class GeminiToClaudeConverter:
|
||
"""
|
||
Gemini -> Claude 响应转换器
|
||
|
||
将 Gemini generateContent 响应转换为 Claude Messages API 格式
|
||
"""
|
||
|
||
def convert_response(self, gemini_response: Dict[str, Any]) -> Dict[str, Any]:
|
||
"""
|
||
将 Gemini 响应转换为 Claude 响应
|
||
|
||
Args:
|
||
gemini_response: Gemini 格式的响应字典
|
||
|
||
Returns:
|
||
Claude 格式的响应字典
|
||
"""
|
||
candidates = gemini_response.get("candidates", [])
|
||
if not candidates:
|
||
return self._create_empty_response()
|
||
|
||
candidate = candidates[0]
|
||
content = candidate.get("content", {})
|
||
parts = content.get("parts", [])
|
||
|
||
# 转换内容块
|
||
claude_content = self._convert_parts_to_content(parts)
|
||
|
||
# 转换使用量
|
||
usage = self._convert_usage(gemini_response.get("usageMetadata", {}))
|
||
|
||
# 转换停止原因
|
||
stop_reason = self._convert_finish_reason(candidate.get("finishReason"))
|
||
|
||
return {
|
||
"id": f"msg_{gemini_response.get('modelVersion', 'gemini')}",
|
||
"type": "message",
|
||
"role": "assistant",
|
||
"content": claude_content,
|
||
"model": gemini_response.get("modelVersion", "gemini"),
|
||
"stop_reason": stop_reason,
|
||
"stop_sequence": None,
|
||
"usage": usage,
|
||
}
|
||
|
||
def _convert_parts_to_content(self, parts: List[Dict[str, Any]]) -> List[Dict[str, Any]]:
|
||
"""将 Gemini parts 转换为 Claude content blocks"""
|
||
content = []
|
||
for part in parts:
|
||
if "text" in part:
|
||
content.append(
|
||
{
|
||
"type": "text",
|
||
"text": part["text"],
|
||
}
|
||
)
|
||
elif "functionCall" in part:
|
||
func_call = part["functionCall"]
|
||
content.append(
|
||
{
|
||
"type": "tool_use",
|
||
"id": f"toolu_{func_call.get('name', '')}",
|
||
"name": func_call.get("name", ""),
|
||
"input": func_call.get("args", {}),
|
||
}
|
||
)
|
||
return content
|
||
|
||
def _convert_usage(self, usage_metadata: Dict[str, Any]) -> Dict[str, int]:
|
||
"""转换使用量信息"""
|
||
return {
|
||
"input_tokens": usage_metadata.get("promptTokenCount", 0),
|
||
"output_tokens": usage_metadata.get("candidatesTokenCount", 0),
|
||
"cache_creation_input_tokens": 0,
|
||
"cache_read_input_tokens": usage_metadata.get("cachedContentTokenCount", 0),
|
||
}
|
||
|
||
def _convert_finish_reason(self, finish_reason: Optional[str]) -> Optional[str]:
|
||
"""转换停止原因"""
|
||
mapping = {
|
||
"STOP": "end_turn",
|
||
"MAX_TOKENS": "max_tokens",
|
||
"SAFETY": "content_filtered",
|
||
"RECITATION": "content_filtered",
|
||
"OTHER": "stop_sequence",
|
||
}
|
||
if finish_reason is None:
|
||
return "end_turn"
|
||
return mapping.get(finish_reason, "end_turn")
|
||
|
||
def _create_empty_response(self) -> Dict[str, Any]:
|
||
"""创建空响应"""
|
||
return {
|
||
"id": "msg_empty",
|
||
"type": "message",
|
||
"role": "assistant",
|
||
"content": [],
|
||
"model": "gemini",
|
||
"stop_reason": "end_turn",
|
||
"stop_sequence": None,
|
||
"usage": {
|
||
"input_tokens": 0,
|
||
"output_tokens": 0,
|
||
},
|
||
}
|
||
|
||
|
||
class OpenAIToGeminiConverter:
|
||
"""
|
||
OpenAI -> Gemini 请求转换器
|
||
|
||
将 OpenAI Chat Completions API 格式转换为 Gemini generateContent 格式
|
||
"""
|
||
|
||
def convert_request(self, openai_request: Dict[str, Any]) -> Dict[str, Any]:
|
||
"""
|
||
将 OpenAI 请求转换为 Gemini 请求
|
||
|
||
Args:
|
||
openai_request: OpenAI 格式的请求字典
|
||
|
||
Returns:
|
||
Gemini 格式的请求字典
|
||
"""
|
||
messages = openai_request.get("messages", [])
|
||
|
||
# 分离 system 消息和其他消息
|
||
system_messages = []
|
||
other_messages = []
|
||
for msg in messages:
|
||
if msg.get("role") == "system":
|
||
system_messages.append(msg)
|
||
else:
|
||
other_messages.append(msg)
|
||
|
||
gemini_request: Dict[str, Any] = {
|
||
"contents": self._convert_messages(other_messages),
|
||
}
|
||
|
||
# 转换 system messages
|
||
if system_messages:
|
||
system_text = "\n".join(msg.get("content", "") for msg in system_messages)
|
||
gemini_request["system_instruction"] = {"parts": [{"text": system_text}]}
|
||
|
||
# 转换生成配置
|
||
generation_config = self._build_generation_config(openai_request)
|
||
if generation_config:
|
||
gemini_request["generation_config"] = generation_config
|
||
|
||
# 转换工具
|
||
tools = openai_request.get("tools")
|
||
if tools:
|
||
gemini_request["tools"] = self._convert_tools(tools)
|
||
|
||
return gemini_request
|
||
|
||
def _convert_messages(self, messages: List[Dict[str, Any]]) -> List[Dict[str, Any]]:
|
||
"""转换消息列表"""
|
||
contents = []
|
||
for msg in messages:
|
||
role = msg.get("role", "user")
|
||
gemini_role = "model" if role == "assistant" else "user"
|
||
|
||
content = msg.get("content", "")
|
||
parts = self._convert_content_to_parts(content)
|
||
|
||
# 处理工具调用
|
||
tool_calls = msg.get("tool_calls", [])
|
||
for tc in tool_calls:
|
||
if tc.get("type") == "function":
|
||
func = tc.get("function", {})
|
||
import json
|
||
|
||
try:
|
||
args = json.loads(func.get("arguments", "{}"))
|
||
except json.JSONDecodeError:
|
||
args = {}
|
||
parts.append(
|
||
{
|
||
"function_call": {
|
||
"name": func.get("name", ""),
|
||
"args": args,
|
||
}
|
||
}
|
||
)
|
||
|
||
if parts:
|
||
contents.append(
|
||
{
|
||
"role": gemini_role,
|
||
"parts": parts,
|
||
}
|
||
)
|
||
return contents
|
||
|
||
def _convert_content_to_parts(self, content: Any) -> List[Dict[str, Any]]:
|
||
"""将 OpenAI 内容转换为 Gemini parts"""
|
||
if content is None:
|
||
return []
|
||
|
||
if isinstance(content, str):
|
||
return [{"text": content}]
|
||
|
||
if isinstance(content, list):
|
||
parts: List[Dict[str, Any]] = []
|
||
for item in content:
|
||
if isinstance(item, str):
|
||
parts.append({"text": item})
|
||
elif isinstance(item, dict):
|
||
item_type = item.get("type")
|
||
if item_type == "text":
|
||
parts.append({"text": item.get("text", "")})
|
||
elif item_type == "image_url":
|
||
# OpenAI 图片 URL 格式
|
||
image_url = item.get("image_url", {})
|
||
url = image_url.get("url", "")
|
||
if url.startswith("data:"):
|
||
# base64 数据 URL
|
||
# 格式: 
|
||
try:
|
||
header, data = url.split(",", 1)
|
||
mime_type = header.split(":")[1].split(";")[0]
|
||
parts.append(
|
||
{
|
||
"inline_data": {
|
||
"mime_type": mime_type,
|
||
"data": data,
|
||
}
|
||
}
|
||
)
|
||
except (ValueError, IndexError):
|
||
pass
|
||
return parts
|
||
|
||
return [{"text": str(content)}]
|
||
|
||
def _build_generation_config(self, openai_request: Dict[str, Any]) -> Optional[Dict[str, Any]]:
|
||
"""构建生成配置"""
|
||
config: Dict[str, Any] = {}
|
||
|
||
if "max_tokens" in openai_request:
|
||
config["max_output_tokens"] = openai_request["max_tokens"]
|
||
if "temperature" in openai_request:
|
||
config["temperature"] = openai_request["temperature"]
|
||
if "top_p" in openai_request:
|
||
config["top_p"] = openai_request["top_p"]
|
||
if "stop" in openai_request:
|
||
stop = openai_request["stop"]
|
||
if isinstance(stop, str):
|
||
config["stop_sequences"] = [stop]
|
||
elif isinstance(stop, list):
|
||
config["stop_sequences"] = stop
|
||
if "n" in openai_request:
|
||
config["candidate_count"] = openai_request["n"]
|
||
|
||
return config if config else None
|
||
|
||
def _convert_tools(self, tools: List[Dict[str, Any]]) -> List[Dict[str, Any]]:
|
||
"""转换工具定义"""
|
||
function_declarations = []
|
||
for tool in tools:
|
||
if tool.get("type") == "function":
|
||
func = tool.get("function", {})
|
||
func_decl = {
|
||
"name": func.get("name", ""),
|
||
}
|
||
if "description" in func:
|
||
func_decl["description"] = func["description"]
|
||
if "parameters" in func:
|
||
func_decl["parameters"] = func["parameters"]
|
||
function_declarations.append(func_decl)
|
||
|
||
return [{"function_declarations": function_declarations}]
|
||
|
||
|
||
class GeminiToOpenAIConverter:
|
||
"""
|
||
Gemini -> OpenAI 响应转换器
|
||
|
||
将 Gemini generateContent 响应转换为 OpenAI Chat Completions API 格式
|
||
"""
|
||
|
||
def convert_response(self, gemini_response: Dict[str, Any]) -> Dict[str, Any]:
|
||
"""
|
||
将 Gemini 响应转换为 OpenAI 响应
|
||
|
||
Args:
|
||
gemini_response: Gemini 格式的响应字典
|
||
|
||
Returns:
|
||
OpenAI 格式的响应字典
|
||
"""
|
||
import time
|
||
|
||
candidates = gemini_response.get("candidates", [])
|
||
choices = []
|
||
|
||
for i, candidate in enumerate(candidates):
|
||
content = candidate.get("content", {})
|
||
parts = content.get("parts", [])
|
||
|
||
# 提取文本内容
|
||
text_parts = []
|
||
tool_calls = []
|
||
|
||
for part in parts:
|
||
if "text" in part:
|
||
text_parts.append(part["text"])
|
||
elif "functionCall" in part:
|
||
func_call = part["functionCall"]
|
||
import json
|
||
|
||
tool_calls.append(
|
||
{
|
||
"id": f"call_{func_call.get('name', '')}_{i}",
|
||
"type": "function",
|
||
"function": {
|
||
"name": func_call.get("name", ""),
|
||
"arguments": json.dumps(func_call.get("args", {})),
|
||
},
|
||
}
|
||
)
|
||
|
||
message: Dict[str, Any] = {
|
||
"role": "assistant",
|
||
"content": "".join(text_parts) if text_parts else None,
|
||
}
|
||
|
||
if tool_calls:
|
||
message["tool_calls"] = tool_calls
|
||
|
||
finish_reason = self._convert_finish_reason(candidate.get("finishReason"))
|
||
|
||
choices.append(
|
||
{
|
||
"index": i,
|
||
"message": message,
|
||
"finish_reason": finish_reason,
|
||
}
|
||
)
|
||
|
||
# 转换使用量
|
||
usage = self._convert_usage(gemini_response.get("usageMetadata", {}))
|
||
|
||
return {
|
||
"id": f"chatcmpl-{gemini_response.get('modelVersion', 'gemini')}",
|
||
"object": "chat.completion",
|
||
"created": int(time.time()),
|
||
"model": gemini_response.get("modelVersion", "gemini"),
|
||
"choices": choices,
|
||
"usage": usage,
|
||
}
|
||
|
||
def _convert_usage(self, usage_metadata: Dict[str, Any]) -> Dict[str, int]:
|
||
"""转换使用量信息"""
|
||
prompt_tokens = usage_metadata.get("promptTokenCount", 0)
|
||
completion_tokens = usage_metadata.get("candidatesTokenCount", 0)
|
||
return {
|
||
"prompt_tokens": prompt_tokens,
|
||
"completion_tokens": completion_tokens,
|
||
"total_tokens": prompt_tokens + completion_tokens,
|
||
}
|
||
|
||
def _convert_finish_reason(self, finish_reason: Optional[str]) -> str:
|
||
"""转换停止原因"""
|
||
mapping = {
|
||
"STOP": "stop",
|
||
"MAX_TOKENS": "length",
|
||
"SAFETY": "content_filter",
|
||
"RECITATION": "content_filter",
|
||
"OTHER": "stop",
|
||
}
|
||
if finish_reason is None:
|
||
return "stop"
|
||
return mapping.get(finish_reason, "stop")
|
||
|
||
|
||
__all__ = [
|
||
"ClaudeToGeminiConverter",
|
||
"GeminiToClaudeConverter",
|
||
"OpenAIToGeminiConverter",
|
||
"GeminiToOpenAIConverter",
|
||
]
|