Files
Aether/src/api/handlers/gemini/converter.py

549 lines
19 KiB
Python
Raw Normal View History

2025-12-10 20:52:44 +08:00
"""
Gemini 格式转换器
提供 Gemini 与其他 API 格式ClaudeOpenAI之间的转换
"""
from typing import Any, Dict, List, Optional
class ClaudeToGeminiConverter:
"""
Claude -> Gemini 请求转换器
Claude Messages API 格式转换为 Gemini generateContent 格式
"""
def convert_request(self, claude_request: Dict[str, Any]) -> Dict[str, Any]:
"""
Claude 请求转换为 Gemini 请求
Args:
claude_request: Claude 格式的请求字典
Returns:
Gemini 格式的请求字典
"""
gemini_request: Dict[str, Any] = {
"contents": self._convert_messages(claude_request.get("messages", [])),
}
# 转换 system prompt
system = claude_request.get("system")
if system:
gemini_request["system_instruction"] = self._convert_system(system)
# 转换生成配置
generation_config = self._build_generation_config(claude_request)
if generation_config:
gemini_request["generation_config"] = generation_config
# 转换工具
tools = claude_request.get("tools")
if tools:
gemini_request["tools"] = self._convert_tools(tools)
return gemini_request
def _convert_messages(self, messages: List[Dict[str, Any]]) -> List[Dict[str, Any]]:
"""转换消息列表"""
contents = []
for msg in messages:
role = msg.get("role", "user")
# Gemini 使用 "model" 而不是 "assistant"
gemini_role = "model" if role == "assistant" else "user"
content = msg.get("content", "")
parts = self._convert_content_to_parts(content)
contents.append(
{
"role": gemini_role,
"parts": parts,
}
)
return contents
def _convert_content_to_parts(self, content: Any) -> List[Dict[str, Any]]:
"""将 Claude 内容转换为 Gemini parts"""
if isinstance(content, str):
return [{"text": content}]
if isinstance(content, list):
parts: List[Dict[str, Any]] = []
2025-12-10 20:52:44 +08:00
for block in content:
if isinstance(block, str):
parts.append({"text": block})
elif isinstance(block, dict):
block_type = block.get("type")
if block_type == "text":
parts.append({"text": block.get("text", "")})
elif block_type == "image":
# 转换图片
source = block.get("source", {})
if source.get("type") == "base64":
parts.append(
{
"inline_data": {
"mime_type": source.get("media_type", "image/png"),
"data": source.get("data", ""),
}
}
)
elif block_type == "tool_use":
# 转换工具调用
parts.append(
{
"function_call": {
"name": block.get("name", ""),
"args": block.get("input", {}),
}
}
)
elif block_type == "tool_result":
# 转换工具结果
parts.append(
{
"function_response": {
"name": block.get("tool_use_id", ""),
"response": {"result": block.get("content", "")},
}
}
)
return parts
return [{"text": str(content)}]
def _convert_system(self, system: Any) -> Dict[str, Any]:
"""转换 system prompt"""
if isinstance(system, str):
return {"parts": [{"text": system}]}
if isinstance(system, list):
parts = []
for item in system:
if isinstance(item, str):
parts.append({"text": item})
elif isinstance(item, dict) and item.get("type") == "text":
parts.append({"text": item.get("text", "")})
return {"parts": parts}
return {"parts": [{"text": str(system)}]}
def _build_generation_config(self, claude_request: Dict[str, Any]) -> Optional[Dict[str, Any]]:
"""构建生成配置"""
config: Dict[str, Any] = {}
if "max_tokens" in claude_request:
config["max_output_tokens"] = claude_request["max_tokens"]
if "temperature" in claude_request:
config["temperature"] = claude_request["temperature"]
if "top_p" in claude_request:
config["top_p"] = claude_request["top_p"]
if "top_k" in claude_request:
config["top_k"] = claude_request["top_k"]
if "stop_sequences" in claude_request:
config["stop_sequences"] = claude_request["stop_sequences"]
return config if config else None
def _convert_tools(self, tools: List[Dict[str, Any]]) -> List[Dict[str, Any]]:
"""转换工具定义"""
function_declarations = []
for tool in tools:
func_decl = {
"name": tool.get("name", ""),
}
if "description" in tool:
func_decl["description"] = tool["description"]
if "input_schema" in tool:
func_decl["parameters"] = tool["input_schema"]
function_declarations.append(func_decl)
return [{"function_declarations": function_declarations}]
class GeminiToClaudeConverter:
"""
Gemini -> Claude 响应转换器
Gemini generateContent 响应转换为 Claude Messages API 格式
"""
def convert_response(self, gemini_response: Dict[str, Any]) -> Dict[str, Any]:
"""
Gemini 响应转换为 Claude 响应
Args:
gemini_response: Gemini 格式的响应字典
Returns:
Claude 格式的响应字典
"""
candidates = gemini_response.get("candidates", [])
if not candidates:
return self._create_empty_response()
candidate = candidates[0]
content = candidate.get("content", {})
parts = content.get("parts", [])
# 转换内容块
claude_content = self._convert_parts_to_content(parts)
# 转换使用量
usage = self._convert_usage(gemini_response.get("usageMetadata", {}))
# 转换停止原因
stop_reason = self._convert_finish_reason(candidate.get("finishReason"))
return {
"id": f"msg_{gemini_response.get('modelVersion', 'gemini')}",
"type": "message",
"role": "assistant",
"content": claude_content,
"model": gemini_response.get("modelVersion", "gemini"),
"stop_reason": stop_reason,
"stop_sequence": None,
"usage": usage,
}
def _convert_parts_to_content(self, parts: List[Dict[str, Any]]) -> List[Dict[str, Any]]:
"""将 Gemini parts 转换为 Claude content blocks"""
content = []
for part in parts:
if "text" in part:
content.append(
{
"type": "text",
"text": part["text"],
}
)
elif "functionCall" in part:
func_call = part["functionCall"]
content.append(
{
"type": "tool_use",
"id": f"toolu_{func_call.get('name', '')}",
"name": func_call.get("name", ""),
"input": func_call.get("args", {}),
}
)
return content
def _convert_usage(self, usage_metadata: Dict[str, Any]) -> Dict[str, int]:
"""转换使用量信息"""
return {
"input_tokens": usage_metadata.get("promptTokenCount", 0),
"output_tokens": usage_metadata.get("candidatesTokenCount", 0),
"cache_creation_input_tokens": 0,
"cache_read_input_tokens": usage_metadata.get("cachedContentTokenCount", 0),
}
def _convert_finish_reason(self, finish_reason: Optional[str]) -> Optional[str]:
"""转换停止原因"""
mapping = {
"STOP": "end_turn",
"MAX_TOKENS": "max_tokens",
"SAFETY": "content_filtered",
"RECITATION": "content_filtered",
"OTHER": "stop_sequence",
}
if finish_reason is None:
return "end_turn"
2025-12-10 20:52:44 +08:00
return mapping.get(finish_reason, "end_turn")
def _create_empty_response(self) -> Dict[str, Any]:
"""创建空响应"""
return {
"id": "msg_empty",
"type": "message",
"role": "assistant",
"content": [],
"model": "gemini",
"stop_reason": "end_turn",
"stop_sequence": None,
"usage": {
"input_tokens": 0,
"output_tokens": 0,
},
}
class OpenAIToGeminiConverter:
"""
OpenAI -> Gemini 请求转换器
OpenAI Chat Completions API 格式转换为 Gemini generateContent 格式
"""
def convert_request(self, openai_request: Dict[str, Any]) -> Dict[str, Any]:
"""
OpenAI 请求转换为 Gemini 请求
Args:
openai_request: OpenAI 格式的请求字典
Returns:
Gemini 格式的请求字典
"""
messages = openai_request.get("messages", [])
# 分离 system 消息和其他消息
system_messages = []
other_messages = []
for msg in messages:
if msg.get("role") == "system":
system_messages.append(msg)
else:
other_messages.append(msg)
gemini_request: Dict[str, Any] = {
"contents": self._convert_messages(other_messages),
}
# 转换 system messages
if system_messages:
system_text = "\n".join(msg.get("content", "") for msg in system_messages)
gemini_request["system_instruction"] = {"parts": [{"text": system_text}]}
# 转换生成配置
generation_config = self._build_generation_config(openai_request)
if generation_config:
gemini_request["generation_config"] = generation_config
# 转换工具
tools = openai_request.get("tools")
if tools:
gemini_request["tools"] = self._convert_tools(tools)
return gemini_request
def _convert_messages(self, messages: List[Dict[str, Any]]) -> List[Dict[str, Any]]:
"""转换消息列表"""
contents = []
for msg in messages:
role = msg.get("role", "user")
gemini_role = "model" if role == "assistant" else "user"
content = msg.get("content", "")
parts = self._convert_content_to_parts(content)
# 处理工具调用
tool_calls = msg.get("tool_calls", [])
for tc in tool_calls:
if tc.get("type") == "function":
func = tc.get("function", {})
import json
try:
args = json.loads(func.get("arguments", "{}"))
except json.JSONDecodeError:
args = {}
parts.append(
{
"function_call": {
"name": func.get("name", ""),
"args": args,
}
}
)
if parts:
contents.append(
{
"role": gemini_role,
"parts": parts,
}
)
return contents
def _convert_content_to_parts(self, content: Any) -> List[Dict[str, Any]]:
"""将 OpenAI 内容转换为 Gemini parts"""
if content is None:
return []
if isinstance(content, str):
return [{"text": content}]
if isinstance(content, list):
parts: List[Dict[str, Any]] = []
2025-12-10 20:52:44 +08:00
for item in content:
if isinstance(item, str):
parts.append({"text": item})
elif isinstance(item, dict):
item_type = item.get("type")
if item_type == "text":
parts.append({"text": item.get("text", "")})
elif item_type == "image_url":
# OpenAI 图片 URL 格式
image_url = item.get("image_url", {})
url = image_url.get("url", "")
if url.startswith("data:"):
# base64 数据 URL
# 格式: 
try:
header, data = url.split(",", 1)
mime_type = header.split(":")[1].split(";")[0]
parts.append(
{
"inline_data": {
"mime_type": mime_type,
"data": data,
}
}
)
except (ValueError, IndexError):
pass
return parts
return [{"text": str(content)}]
def _build_generation_config(self, openai_request: Dict[str, Any]) -> Optional[Dict[str, Any]]:
"""构建生成配置"""
config: Dict[str, Any] = {}
if "max_tokens" in openai_request:
config["max_output_tokens"] = openai_request["max_tokens"]
if "temperature" in openai_request:
config["temperature"] = openai_request["temperature"]
if "top_p" in openai_request:
config["top_p"] = openai_request["top_p"]
if "stop" in openai_request:
stop = openai_request["stop"]
if isinstance(stop, str):
config["stop_sequences"] = [stop]
elif isinstance(stop, list):
config["stop_sequences"] = stop
if "n" in openai_request:
config["candidate_count"] = openai_request["n"]
return config if config else None
def _convert_tools(self, tools: List[Dict[str, Any]]) -> List[Dict[str, Any]]:
"""转换工具定义"""
function_declarations = []
for tool in tools:
if tool.get("type") == "function":
func = tool.get("function", {})
func_decl = {
"name": func.get("name", ""),
}
if "description" in func:
func_decl["description"] = func["description"]
if "parameters" in func:
func_decl["parameters"] = func["parameters"]
function_declarations.append(func_decl)
return [{"function_declarations": function_declarations}]
class GeminiToOpenAIConverter:
"""
Gemini -> OpenAI 响应转换器
Gemini generateContent 响应转换为 OpenAI Chat Completions API 格式
"""
def convert_response(self, gemini_response: Dict[str, Any]) -> Dict[str, Any]:
"""
Gemini 响应转换为 OpenAI 响应
Args:
gemini_response: Gemini 格式的响应字典
Returns:
OpenAI 格式的响应字典
"""
import time
candidates = gemini_response.get("candidates", [])
choices = []
for i, candidate in enumerate(candidates):
content = candidate.get("content", {})
parts = content.get("parts", [])
# 提取文本内容
text_parts = []
tool_calls = []
for part in parts:
if "text" in part:
text_parts.append(part["text"])
elif "functionCall" in part:
func_call = part["functionCall"]
import json
tool_calls.append(
{
"id": f"call_{func_call.get('name', '')}_{i}",
"type": "function",
"function": {
"name": func_call.get("name", ""),
"arguments": json.dumps(func_call.get("args", {})),
},
}
)
message: Dict[str, Any] = {
"role": "assistant",
"content": "".join(text_parts) if text_parts else None,
}
if tool_calls:
message["tool_calls"] = tool_calls
finish_reason = self._convert_finish_reason(candidate.get("finishReason"))
choices.append(
{
"index": i,
"message": message,
"finish_reason": finish_reason,
}
)
# 转换使用量
usage = self._convert_usage(gemini_response.get("usageMetadata", {}))
return {
"id": f"chatcmpl-{gemini_response.get('modelVersion', 'gemini')}",
"object": "chat.completion",
"created": int(time.time()),
"model": gemini_response.get("modelVersion", "gemini"),
"choices": choices,
"usage": usage,
}
def _convert_usage(self, usage_metadata: Dict[str, Any]) -> Dict[str, int]:
"""转换使用量信息"""
prompt_tokens = usage_metadata.get("promptTokenCount", 0)
completion_tokens = usage_metadata.get("candidatesTokenCount", 0)
return {
"prompt_tokens": prompt_tokens,
"completion_tokens": completion_tokens,
"total_tokens": prompt_tokens + completion_tokens,
}
def _convert_finish_reason(self, finish_reason: Optional[str]) -> str:
2025-12-10 20:52:44 +08:00
"""转换停止原因"""
mapping = {
"STOP": "stop",
"MAX_TOKENS": "length",
"SAFETY": "content_filter",
"RECITATION": "content_filter",
"OTHER": "stop",
}
if finish_reason is None:
return "stop"
2025-12-10 20:52:44 +08:00
return mapping.get(finish_reason, "stop")
__all__ = [
"ClaudeToGeminiConverter",
"GeminiToClaudeConverter",
"OpenAIToGeminiConverter",
"GeminiToOpenAIConverter",
]