4 Commits

Author SHA1 Message Date
fawney19
03ad16ea8a fix: 修复迁移脚本在全新安装时报错及改进统计回填逻辑
迁移脚本修复:
- 移除 AUTOCOMMIT 模式,改为在同一事务中创建索引
- 分别检查每个索引是否存在,只创建缺失的索引
- 修复全新安装时 AUTOCOMMIT 连接看不到未提交表的问题 (#46)

统计回填改进:
- 分别检查 StatsDaily 和 StatsDailyModel 的缺失日期
- 只回填实际缺失的数据而非连续区间
- 添加失败统计计数和 rollback 错误日志
2025-12-24 21:50:05 +08:00
fawney19
2fa64b98e3 fix: deploy.sh 将 Dockerfile.app.local 纳入代码变化检测 2025-12-24 18:10:42 +08:00
fawney19
75d7e89cbb perf: 添加 gunicorn --preload 参数优化内存占用
Worker 进程共享只读内存(代码、常量),可减少约 30-40% 内存占用

Closes #44
2025-12-24 18:10:42 +08:00
fawney19
d73a443484 fix: 修复初次执行 migrate.sh 时 usage 表不存在的问题 (#43)
- 在 baseline 中直接创建 usage 表复合索引
- 在后续迁移中添加表存在性检查,避免 AUTOCOMMIT 连接看不到事务中的表
2025-12-24 18:10:42 +08:00
6 changed files with 134 additions and 91 deletions

View File

@@ -105,7 +105,7 @@ RUN printf '%s\n' \
'stderr_logfile=/var/log/nginx/error.log' \
'' \
'[program:app]' \
'command=gunicorn src.main:app -w %(ENV_GUNICORN_WORKERS)s -k uvicorn.workers.UvicornWorker --bind 0.0.0.0:%(ENV_PORT)s --timeout 120 --access-logfile - --error-logfile - --log-level info' \
'command=gunicorn src.main:app --preload -w %(ENV_GUNICORN_WORKERS)s -k uvicorn.workers.UvicornWorker --bind 0.0.0.0:%(ENV_PORT)s --timeout 120 --access-logfile - --error-logfile - --log-level info' \
'directory=/app' \
'autostart=true' \
'autorestart=true' \

View File

@@ -106,7 +106,7 @@ RUN printf '%s\n' \
'stderr_logfile=/var/log/nginx/error.log' \
'' \
'[program:app]' \
'command=gunicorn src.main:app -w %(ENV_GUNICORN_WORKERS)s -k uvicorn.workers.UvicornWorker --bind 0.0.0.0:%(ENV_PORT)s --timeout 120 --access-logfile - --error-logfile - --log-level info' \
'command=gunicorn src.main:app --preload -w %(ENV_GUNICORN_WORKERS)s -k uvicorn.workers.UvicornWorker --bind 0.0.0.0:%(ENV_PORT)s --timeout 120 --access-logfile - --error-logfile - --log-level info' \
'directory=/app' \
'autostart=true' \
'autorestart=true' \

View File

@@ -394,6 +394,10 @@ def upgrade() -> None:
index=True,
),
)
# usage 表复合索引(优化常见查询)
op.create_index("idx_usage_user_created", "usage", ["user_id", "created_at"])
op.create_index("idx_usage_apikey_created", "usage", ["api_key_id", "created_at"])
op.create_index("idx_usage_provider_model_created", "usage", ["provider", "model", "created_at"])
# ==================== user_quotas ====================
op.create_table(

View File

@@ -18,33 +18,35 @@ depends_on = None
def upgrade() -> None:
"""为 usage 表添加复合索引以优化常见查询
使用 CONCURRENTLY 创建索引以避免锁表,
但需要在 AUTOCOMMIT 模式下执行(不能在事务内)
注意:这些索引已经在 baseline 迁移中创建。
此迁移仅用于从旧版本升级的场景,新安装会跳过。
"""
conn = op.get_bind()
engine = conn.engine
# 使用新连接并设置 AUTOCOMMIT 模式以支持 CREATE INDEX CONCURRENTLY
with engine.connect().execution_options(isolation_level="AUTOCOMMIT") as autocommit_conn:
# 使用 IF NOT EXISTS 避免重复创建,无需单独检查索引是否存在
# 检查 usage 表是否存在
result = conn.execute(text(
"SELECT EXISTS (SELECT FROM information_schema.tables WHERE table_name = 'usage')"
))
if not result.scalar():
# 表不存在,跳过
return
# 1. user_id + created_at 复合索引 (用户用量查询)
autocommit_conn.execute(text(
"CREATE INDEX CONCURRENTLY IF NOT EXISTS idx_usage_user_created "
"ON usage (user_id, created_at)"
# 定义需要创建的索引
indexes = [
("idx_usage_user_created", "ON usage (user_id, created_at)"),
("idx_usage_apikey_created", "ON usage (api_key_id, created_at)"),
("idx_usage_provider_model_created", "ON usage (provider, model, created_at)"),
]
# 分别检查并创建每个索引
for index_name, index_def in indexes:
result = conn.execute(text(
f"SELECT EXISTS (SELECT 1 FROM pg_indexes WHERE indexname = '{index_name}')"
))
if result.scalar():
continue # 索引已存在,跳过
# 2. api_key_id + created_at 复合索引 (API Key 用量查询)
autocommit_conn.execute(text(
"CREATE INDEX CONCURRENTLY IF NOT EXISTS idx_usage_apikey_created "
"ON usage (api_key_id, created_at)"
))
# 3. provider + model + created_at 复合索引 (模型统计查询)
autocommit_conn.execute(text(
"CREATE INDEX CONCURRENTLY IF NOT EXISTS idx_usage_provider_model_created "
"ON usage (provider, model, created_at)"
))
conn.execute(text(f"CREATE INDEX {index_name} {index_def}"))
def downgrade() -> None:

View File

@@ -26,10 +26,13 @@ calc_deps_hash() {
cat pyproject.toml frontend/package.json frontend/package-lock.json Dockerfile.base.local 2>/dev/null | md5sum | cut -d' ' -f1
}
# 计算代码文件的哈希值
# 计算代码文件的哈希值(包含 Dockerfile.app.local
calc_code_hash() {
find src -type f -name "*.py" 2>/dev/null | sort | xargs cat 2>/dev/null | md5sum | cut -d' ' -f1
find frontend/src -type f \( -name "*.vue" -o -name "*.ts" -o -name "*.tsx" -o -name "*.js" \) 2>/dev/null | sort | xargs cat 2>/dev/null | md5sum | cut -d' ' -f1
{
cat Dockerfile.app.local 2>/dev/null
find src -type f -name "*.py" 2>/dev/null | sort | xargs cat 2>/dev/null
find frontend/src -type f \( -name "*.vue" -o -name "*.ts" -o -name "*.tsx" -o -name "*.js" \) 2>/dev/null | sort | xargs cat 2>/dev/null
} | md5sum | cut -d' ' -f1
}
# 计算迁移文件的哈希值

View File

@@ -208,86 +208,120 @@ class CleanupScheduler:
return
# 非首次运行,检查最近是否有缺失的日期需要回填
latest_stat = db.query(StatsDaily).order_by(StatsDaily.date.desc()).first()
from src.models.database import StatsDailyModel
if latest_stat:
latest_date_utc = latest_stat.date
if latest_date_utc.tzinfo is None:
latest_date_utc = latest_date_utc.replace(tzinfo=timezone.utc)
else:
latest_date_utc = latest_date_utc.astimezone(timezone.utc)
yesterday_business_date = today_local.date() - timedelta(days=1)
max_backfill_days: int = SystemConfigService.get_config(
db, "max_stats_backfill_days", 30
) or 30
# 使用业务日期计算缺失区间(避免用 UTC 年月日导致日期偏移,且对 DST 更安全)
latest_business_date = latest_date_utc.astimezone(app_tz).date()
yesterday_business_date = today_local.date() - timedelta(days=1)
missing_start_date = latest_business_date + timedelta(days=1)
# 计算回填检查的起始日期
check_start_date = yesterday_business_date - timedelta(
days=max_backfill_days - 1
)
if missing_start_date <= yesterday_business_date:
missing_days = (
yesterday_business_date - missing_start_date
).days + 1
# 获取 StatsDaily 和 StatsDailyModel 中已有数据的日期集合
existing_daily_dates = set()
existing_model_dates = set()
# 限制最大回填天数,防止停机很久后一次性回填太多
max_backfill_days: int = SystemConfigService.get_config(
db, "max_stats_backfill_days", 30
) or 30
if missing_days > max_backfill_days:
logger.warning(
f"缺失 {missing_days} 天数据超过最大回填限制 "
f"{max_backfill_days} 天,只回填最近 {max_backfill_days}"
daily_stats = (
db.query(StatsDaily.date)
.filter(StatsDaily.date >= check_start_date.isoformat())
.all()
)
for (stat_date,) in daily_stats:
if stat_date.tzinfo is None:
stat_date = stat_date.replace(tzinfo=timezone.utc)
existing_daily_dates.add(stat_date.astimezone(app_tz).date())
model_stats = (
db.query(StatsDailyModel.date)
.filter(StatsDailyModel.date >= check_start_date.isoformat())
.distinct()
.all()
)
for (stat_date,) in model_stats:
if stat_date.tzinfo is None:
stat_date = stat_date.replace(tzinfo=timezone.utc)
existing_model_dates.add(stat_date.astimezone(app_tz).date())
# 找出需要回填的日期
all_dates = set()
current = check_start_date
while current <= yesterday_business_date:
all_dates.add(current)
current += timedelta(days=1)
# 需要回填 StatsDaily 的日期
missing_daily_dates = all_dates - existing_daily_dates
# 需要回填 StatsDailyModel 的日期
missing_model_dates = all_dates - existing_model_dates
# 合并所有需要处理的日期
dates_to_process = missing_daily_dates | missing_model_dates
if dates_to_process:
sorted_dates = sorted(dates_to_process)
logger.info(
f"检测到 {len(dates_to_process)} 天的统计数据需要回填 "
f"(StatsDaily 缺失 {len(missing_daily_dates)} 天, "
f"StatsDailyModel 缺失 {len(missing_model_dates)} 天)"
)
users = (
db.query(DBUser.id).filter(DBUser.is_active.is_(True)).all()
)
failed_dates = 0
failed_users = 0
for current_date in sorted_dates:
try:
current_date_local = datetime.combine(
current_date, datetime.min.time(), tzinfo=app_tz
)
missing_start_date = yesterday_business_date - timedelta(
days=max_backfill_days - 1
)
missing_days = max_backfill_days
logger.info(
f"检测到缺失 {missing_days} 天的统计数据 "
f"({missing_start_date} ~ {yesterday_business_date}),开始回填..."
)
current_date = missing_start_date
users = (
db.query(DBUser.id).filter(DBUser.is_active.is_(True)).all()
)
while current_date <= yesterday_business_date:
try:
current_date_local = datetime.combine(
current_date, datetime.min.time(), tzinfo=app_tz
)
# 只在缺失时才聚合对应的表
if current_date in missing_daily_dates:
StatsAggregatorService.aggregate_daily_stats(
db, current_date_local
)
if current_date in missing_model_dates:
StatsAggregatorService.aggregate_daily_model_stats(
db, current_date_local
)
for (user_id,) in users:
try:
StatsAggregatorService.aggregate_user_daily_stats(
db, user_id, current_date_local
)
except Exception as e:
logger.warning(
f"回填用户 {user_id} 日期 {current_date} 失败: {e}"
)
try:
db.rollback()
except Exception:
pass
except Exception as e:
logger.warning(f"回填日期 {current_date} 失败: {e}")
# 用户统计在任一缺失时都回填
for (user_id,) in users:
try:
db.rollback()
except Exception:
pass
StatsAggregatorService.aggregate_user_daily_stats(
db, user_id, current_date_local
)
except Exception as e:
failed_users += 1
logger.warning(
f"回填用户 {user_id} 日期 {current_date} 失败: {e}"
)
try:
db.rollback()
except Exception as rollback_err:
logger.error(f"回滚失败: {rollback_err}")
except Exception as e:
failed_dates += 1
logger.warning(f"回填日期 {current_date} 失败: {e}")
try:
db.rollback()
except Exception as rollback_err:
logger.error(f"回滚失败: {rollback_err}")
current_date += timedelta(days=1)
StatsAggregatorService.update_summary(db)
StatsAggregatorService.update_summary(db)
logger.info(f"缺失数据回填完成,共 {missing_days}")
if failed_dates > 0 or failed_users > 0:
logger.warning(
f"回填完成,共处理 {len(dates_to_process)} 天,"
f"失败: {failed_dates} 天, {failed_users} 个用户记录"
)
else:
logger.info("统计数据已是最新,无需回填")
logger.info(f"缺失数据回填完成,共处理 {len(dates_to_process)}")
else:
logger.info("统计数据已是最新,无需回填")
return
# 定时任务:聚合昨天的数据