docs: reorganize documentation into i18n folder structure (#466)

* docs: reorganize docs into en/cn/ja folders

- Move documentation files into language-specific folders (en, cn, ja)
- Add Chinese and Japanese translations for all docs
- Extract Docker section from README to separate doc file
- Update README to link to new doc locations

* docs: fix links to new docs folder structure

* docs: update README and provider docs

* docs: fix broken import statements in cloudflare deploy guides

* docs: sync CN/JA READMEs with EN structure and fix all paths
This commit is contained in:
Dayuan Jiang
2025-12-31 00:04:32 +09:00
committed by GitHub
parent 24afa0b58a
commit aaa2938dac
15 changed files with 1262 additions and 268 deletions

236
docs/en/ai-providers.md Normal file
View File

@@ -0,0 +1,236 @@
# AI Provider Configuration
This guide explains how to configure different AI model providers for next-ai-draw-io.
## Quick Start
1. Copy `.env.example` to `.env.local`
2. Set your API key for your chosen provider
3. Set `AI_MODEL` to your desired model
4. Run `npm run dev`
## Supported Providers
### Doubao (ByteDance Volcengine)
> **Free tokens**: Register on the [Volcengine ARK platform](https://console.volcengine.com/ark/region:ark+cn-beijing/overview?briefPage=0&briefType=introduce&type=new&utm_campaign=doubao&utm_content=aidrawio&utm_medium=github&utm_source=coopensrc&utm_term=project) to get 500K free tokens for all models!
```bash
DOUBAO_API_KEY=your_api_key
AI_MODEL=doubao-seed-1-8-251215 # or other Doubao model
```
### Google Gemini
```bash
GOOGLE_GENERATIVE_AI_API_KEY=your_api_key
AI_MODEL=gemini-2.0-flash
```
Optional custom endpoint:
```bash
GOOGLE_BASE_URL=https://your-custom-endpoint
```
### OpenAI
```bash
OPENAI_API_KEY=your_api_key
AI_MODEL=gpt-4o
```
Optional custom endpoint (for OpenAI-compatible services):
```bash
OPENAI_BASE_URL=https://your-custom-endpoint/v1
```
### Anthropic
```bash
ANTHROPIC_API_KEY=your_api_key
AI_MODEL=claude-sonnet-4-5-20250514
```
Optional custom endpoint:
```bash
ANTHROPIC_BASE_URL=https://your-custom-endpoint
```
### DeepSeek
```bash
DEEPSEEK_API_KEY=your_api_key
AI_MODEL=deepseek-chat
```
Optional custom endpoint:
```bash
DEEPSEEK_BASE_URL=https://your-custom-endpoint
```
### SiliconFlow (OpenAI-compatible)
```bash
SILICONFLOW_API_KEY=your_api_key
AI_MODEL=deepseek-ai/DeepSeek-V3 # example; use any SiliconFlow model id
```
Optional custom endpoint (defaults to the recommended domain):
```bash
SILICONFLOW_BASE_URL=https://api.siliconflow.com/v1 # or https://api.siliconflow.cn/v1
```
### SGLang
```bash
SGLANG_API_KEY=your_api_key
AI_MODEL=your_model_id
```
Optional custom endpoint:
```bash
SGLANG_BASE_URL=https://your-custom-endpoint/v1
```
### Azure OpenAI
```bash
AZURE_API_KEY=your_api_key
AZURE_RESOURCE_NAME=your-resource-name # Required: your Azure resource name
AI_MODEL=your-deployment-name
```
Or use a custom endpoint instead of resource name:
```bash
AZURE_API_KEY=your_api_key
AZURE_BASE_URL=https://your-resource.openai.azure.com # Alternative to AZURE_RESOURCE_NAME
AI_MODEL=your-deployment-name
```
Optional reasoning configuration:
```bash
AZURE_REASONING_EFFORT=low # Optional: low, medium, high
AZURE_REASONING_SUMMARY=detailed # Optional: none, brief, detailed
```
### AWS Bedrock
```bash
AWS_REGION=us-west-2
AWS_ACCESS_KEY_ID=your_access_key_id
AWS_SECRET_ACCESS_KEY=your_secret_access_key
AI_MODEL=anthropic.claude-sonnet-4-5-20250514-v1:0
```
Note: On AWS (Lambda, EC2 with IAM role), credentials are automatically obtained from the IAM role.
### OpenRouter
```bash
OPENROUTER_API_KEY=your_api_key
AI_MODEL=anthropic/claude-sonnet-4
```
Optional custom endpoint:
```bash
OPENROUTER_BASE_URL=https://your-custom-endpoint
```
### Ollama (Local)
```bash
AI_PROVIDER=ollama
AI_MODEL=llama3.2
```
Optional custom URL:
```bash
OLLAMA_BASE_URL=http://localhost:11434
```
### Vercel AI Gateway
Vercel AI Gateway provides unified access to multiple AI providers through a single API key. This simplifies authentication and allows you to switch between providers without managing multiple API keys.
**Basic Usage (Vercel-hosted Gateway):**
```bash
AI_GATEWAY_API_KEY=your_gateway_api_key
AI_MODEL=openai/gpt-4o
```
**Custom Gateway URL (for local development or self-hosted Gateway):**
```bash
AI_GATEWAY_API_KEY=your_custom_api_key
AI_GATEWAY_BASE_URL=https://your-custom-gateway.com/v1/ai
AI_MODEL=openai/gpt-4o
```
Model format uses `provider/model` syntax:
- `openai/gpt-4o` - OpenAI GPT-4o
- `anthropic/claude-sonnet-4-5` - Anthropic Claude Sonnet 4.5
- `google/gemini-2.0-flash` - Google Gemini 2.0 Flash
**Configuration notes:**
- If `AI_GATEWAY_BASE_URL` is not set, the default Vercel Gateway URL (`https://ai-gateway.vercel.sh/v1/ai`) is used
- Custom base URL is useful for:
- Local development with a custom Gateway instance
- Self-hosted AI Gateway deployments
- Enterprise proxy configurations
- When using a custom base URL, you must also provide `AI_GATEWAY_API_KEY`
Get your API key from the [Vercel AI Gateway dashboard](https://vercel.com/ai-gateway).
## Auto-Detection
If you only configure **one** provider's API key, the system will automatically detect and use that provider. No need to set `AI_PROVIDER`.
If you configure **multiple** API keys, you must explicitly set `AI_PROVIDER`:
```bash
AI_PROVIDER=google # or: openai, anthropic, deepseek, siliconflow, doubao, azure, bedrock, openrouter, ollama, gateway, sglang
```
## Model Capability Requirements
This task requires exceptionally strong model capabilities, as it involves generating long-form text with strict formatting constraints (draw.io XML).
**Recommended models**:
- Claude Sonnet 4.5 / Opus 4.5
**Note on Ollama**: While Ollama is supported as a provider, it's generally not practical for this use case unless you're running high-capability models like DeepSeek R1 or Qwen3-235B locally.
## Temperature Setting
You can optionally configure the temperature via environment variable:
```bash
TEMPERATURE=0 # More deterministic output (recommended for diagrams)
```
**Important**: Leave `TEMPERATURE` unset for models that don't support temperature settings, such as:
- GPT-5.1 and other reasoning models
- Some specialized models
When unset, the model uses its default behavior.
## Recommendations
- **Best experience**: Use models with vision support (GPT-4o, Claude, Gemini) for image-to-diagram features
- **Budget-friendly**: DeepSeek offers competitive pricing
- **Privacy**: Use Ollama for fully local, offline operation (requires powerful hardware)
- **Flexibility**: OpenRouter provides access to many models through a single API

View File

@@ -0,0 +1,267 @@
# Deploy on Cloudflare Workers
This project can be deployed as a **Cloudflare Worker** using the **OpenNext adapter**, giving you:
- Global edge deployment
- Very low latency
- Free `workers.dev` hosting
- Full Next.js ISR support via R2 (optional)
> **Important Windows Note:** OpenNext and Wrangler are **not fully reliable on native Windows**. Recommended options:
>
> - Use **GitHub Codespaces** (works perfectly)
> - OR use **WSL (Linux)**
>
> Pure Windows builds may fail due to WASM file path issues.
---
## Prerequisites
1. A **Cloudflare account** (free tier works for basic deployment)
2. **Node.js 18+**
3. **Wrangler CLI** installed (dev dependency is fine):
```bash
npm install -D wrangler
```
4. Cloudflare login:
```bash
npx wrangler login
```
> **Note:** A payment method is only required if you want to enable R2 for ISR caching. Basic Workers deployment is free.
---
## Step 1 — Install dependencies
```bash
npm install
```
---
## Step 2 — Configure environment variables
Cloudflare uses a different file for local testing.
### 1) Create `.dev.vars` (for Cloudflare local + deploy)
```bash
cp env.example .dev.vars
```
Fill in your API keys and configuration.
### 2) Make sure `.env.local` also exists (for regular Next.js dev)
```bash
cp env.example .env.local
```
Fill in the same values there.
---
## Step 3 — Choose your deployment type
### Option A: Deploy WITHOUT R2 (Simple, Free)
If you don't need ISR caching, you can deploy without R2:
**1. Use simple `open-next.config.ts`:**
```ts
import { defineCloudflareConfig } from "@opennextjs/cloudflare/config"
export default defineCloudflareConfig({})
```
**2. Use simple `wrangler.jsonc` (without r2_buckets):**
```jsonc
{
"$schema": "node_modules/wrangler/config-schema.json",
"main": ".open-next/worker.js",
"name": "next-ai-draw-io-worker",
"compatibility_date": "2025-12-08",
"compatibility_flags": ["nodejs_compat", "global_fetch_strictly_public"],
"assets": {
"directory": ".open-next/assets",
"binding": "ASSETS"
},
"services": [
{
"binding": "WORKER_SELF_REFERENCE",
"service": "next-ai-draw-io-worker"
}
]
}
```
Skip to **Step 4**.
---
### Option B: Deploy WITH R2 (Full ISR Support)
R2 enables **Incremental Static Regeneration (ISR)** caching. Requires a payment method on your Cloudflare account.
**1. Create an R2 bucket** in the Cloudflare Dashboard:
- Go to **Storage & Databases → R2**
- Click **Create bucket**
- Name it: `next-inc-cache`
**2. Configure `open-next.config.ts`:**
```ts
import { defineCloudflareConfig } from "@opennextjs/cloudflare/config"
import r2IncrementalCache from "@opennextjs/cloudflare/overrides/incremental-cache/r2-incremental-cache"
export default defineCloudflareConfig({
incrementalCache: r2IncrementalCache,
})
```
**3. Configure `wrangler.jsonc` (with R2):**
```jsonc
{
"$schema": "node_modules/wrangler/config-schema.json",
"main": ".open-next/worker.js",
"name": "next-ai-draw-io-worker",
"compatibility_date": "2025-12-08",
"compatibility_flags": ["nodejs_compat", "global_fetch_strictly_public"],
"assets": {
"directory": ".open-next/assets",
"binding": "ASSETS"
},
"r2_buckets": [
{
"binding": "NEXT_INC_CACHE_R2_BUCKET",
"bucket_name": "next-inc-cache"
}
],
"services": [
{
"binding": "WORKER_SELF_REFERENCE",
"service": "next-ai-draw-io-worker"
}
]
}
```
> **Important:** The `bucket_name` must exactly match the name you created in the Cloudflare dashboard.
---
## Step 4 — Register a workers.dev subdomain (first-time only)
Before your first deployment, you need a workers.dev subdomain.
**Option 1: Via Cloudflare Dashboard (Recommended)**
Visit: https://dash.cloudflare.com → Workers & Pages → Overview → Set up a subdomain
**Option 2: During deploy**
When you run `npm run deploy`, Wrangler may prompt:
```
Would you like to register a workers.dev subdomain? (Y/n)
```
Type `Y` and choose a subdomain name.
> **Note:** In CI/CD or non-interactive environments, the prompt won't appear. Register via the dashboard first.
---
## Step 5 — Deploy to Cloudflare
```bash
npm run deploy
```
What the script does:
- Builds the Next.js app
- Converts it to a Cloudflare Worker via OpenNext
- Uploads static assets
- Publishes the Worker
Your app will be available at:
```
https://<worker-name>.<your-subdomain>.workers.dev
```
---
## Common issues & fixes
### `You need to register a workers.dev subdomain`
**Cause:** No workers.dev subdomain registered for your account.
**Fix:** Go to https://dash.cloudflare.com → Workers & Pages → Set up a subdomain.
---
### `Please enable R2 through the Cloudflare Dashboard`
**Cause:** R2 is configured in wrangler.jsonc but not enabled on your account.
**Fix:** Either enable R2 (requires payment method) or use Option A (deploy without R2).
---
### `No R2 binding "NEXT_INC_CACHE_R2_BUCKET" found`
**Cause:** `r2_buckets` is missing from `wrangler.jsonc`.
**Fix:** Add the `r2_buckets` section or switch to Option A (without R2).
---
### `Can't set compatibility date in the future`
**Cause:** `compatibility_date` in wrangler config is set to a future date.
**Fix:** Change `compatibility_date` to today or an earlier date.
---
### Windows error: `resvg.wasm?module` (ENOENT)
**Cause:** Windows filenames cannot include `?`, but a wasm asset uses `?module` in its filename.
**Fix:** Build/deploy on Linux (WSL, Codespaces, or CI).
---
## Optional: Preview locally
Preview the Worker locally before deploying:
```bash
npm run preview
```
---
## Summary
| Feature | Without R2 | With R2 |
|---------|------------|---------|
| Cost | Free | Requires payment method |
| ISR Caching | No | Yes |
| Static Pages | Yes | Yes |
| API Routes | Yes | Yes |
| Setup Complexity | Simple | Moderate |
Choose **without R2** for testing or simple apps. Choose **with R2** for production apps that need ISR caching.

29
docs/en/docker.md Normal file
View File

@@ -0,0 +1,29 @@
# Run with Docker
If you just want to run it locally, the best way is to use Docker.
First, install Docker if you haven't already: [Get Docker](https://docs.docker.com/get-docker/)
Then run:
```bash
docker run -d -p 3000:3000 \
-e AI_PROVIDER=openai \
-e AI_MODEL=gpt-4o \
-e OPENAI_API_KEY=your_api_key \
ghcr.io/dayuanjiang/next-ai-draw-io:latest
```
Or use an env file:
```bash
cp env.example .env
# Edit .env with your configuration
docker run -d -p 3000:3000 --env-file .env ghcr.io/dayuanjiang/next-ai-draw-io:latest
```
Open [http://localhost:3000](http://localhost:3000) in your browser.
Replace the environment variables with your preferred AI provider configuration. See [AI Providers](./ai-providers.md) for available options.
> **Offline Deployment:** If `embed.diagrams.net` is blocked, see [Offline Deployment](./offline-deployment.md) for configuration options.

View File

@@ -0,0 +1,39 @@
# Offline Deployment
Deploy Next AI Draw.io offline by self-hosting draw.io to replace `embed.diagrams.net`.
**Note:** `NEXT_PUBLIC_DRAWIO_BASE_URL` is a **build-time** variable. Changing it requires rebuilding the Docker image.
## Docker Compose Setup
1. Clone the repository and define API keys in `.env`.
2. Create `docker-compose.yml`:
```yaml
services:
drawio:
image: jgraph/drawio:latest
ports: ["8080:8080"]
next-ai-draw-io:
build:
context: .
args:
- NEXT_PUBLIC_DRAWIO_BASE_URL=http://localhost:8080
ports: ["3000:3000"]
env_file: .env
depends_on: [drawio]
```
3. Run `docker compose up -d` and open `http://localhost:3000`.
## Configuration & Critical Warning
**The `NEXT_PUBLIC_DRAWIO_BASE_URL` must be accessible from the user's browser.**
| Scenario | URL Value |
|----------|-----------|
| Localhost | `http://localhost:8080` |
| Remote/Server | `http://YOUR_SERVER_IP:8080` |
**Do NOT use** internal Docker aliases like `http://drawio:8080`; the browser cannot resolve them.