mirror of
https://github.com/fawney19/Aether.git
synced 2026-01-03 00:02:28 +08:00
- 在 aware_scheduler.py 中添加调试日志,用于跟踪模型支持检查过程 - 重构 model_cache.py 的别名解析逻辑:调整优先级为 alias > provider_model_name > direct_match - 优化缓存命中路径,将直接匹配逻辑移到别名匹配失败后执行
516 lines
22 KiB
Python
516 lines
22 KiB
Python
"""
|
||
Model 映射缓存服务 - 减少模型查询
|
||
"""
|
||
|
||
import json
|
||
import time
|
||
from typing import Optional
|
||
|
||
from sqlalchemy.exc import OperationalError, ProgrammingError
|
||
from sqlalchemy.orm import Session
|
||
|
||
from src.config.constants import CacheTTL
|
||
from src.core.cache_service import CacheService
|
||
from src.core.logger import logger
|
||
from src.core.metrics import (
|
||
model_alias_conflict_total,
|
||
model_alias_resolution_duration_seconds,
|
||
model_alias_resolution_total,
|
||
)
|
||
from src.models.database import GlobalModel, Model
|
||
|
||
|
||
class ModelCacheService:
|
||
"""Model 映射缓存服务"""
|
||
|
||
# 缓存 TTL(秒)- 使用统一常量
|
||
CACHE_TTL = CacheTTL.MODEL
|
||
|
||
@staticmethod
|
||
async def get_model_by_id(db: Session, model_id: str) -> Optional[Model]:
|
||
"""
|
||
获取 Model(带缓存)
|
||
|
||
Args:
|
||
db: 数据库会话
|
||
model_id: Model ID
|
||
|
||
Returns:
|
||
Model 对象或 None
|
||
"""
|
||
cache_key = f"model:id:{model_id}"
|
||
|
||
# 1. 尝试从缓存获取
|
||
cached_data = await CacheService.get(cache_key)
|
||
if cached_data:
|
||
logger.debug(f"Model 缓存命中: {model_id}")
|
||
return ModelCacheService._dict_to_model(cached_data)
|
||
|
||
# 2. 缓存未命中,查询数据库
|
||
model = db.query(Model).filter(Model.id == model_id).first()
|
||
|
||
# 3. 写入缓存
|
||
if model:
|
||
model_dict = ModelCacheService._model_to_dict(model)
|
||
await CacheService.set(cache_key, model_dict, ttl_seconds=ModelCacheService.CACHE_TTL)
|
||
logger.debug(f"Model 已缓存: {model_id}")
|
||
|
||
return model
|
||
|
||
@staticmethod
|
||
async def get_global_model_by_id(db: Session, global_model_id: str) -> Optional[GlobalModel]:
|
||
"""
|
||
获取 GlobalModel(带缓存)
|
||
|
||
Args:
|
||
db: 数据库会话
|
||
global_model_id: GlobalModel ID
|
||
|
||
Returns:
|
||
GlobalModel 对象或 None
|
||
"""
|
||
cache_key = f"global_model:id:{global_model_id}"
|
||
|
||
# 1. 尝试从缓存获取
|
||
cached_data = await CacheService.get(cache_key)
|
||
if cached_data:
|
||
logger.debug(f"GlobalModel 缓存命中: {global_model_id}")
|
||
return ModelCacheService._dict_to_global_model(cached_data)
|
||
|
||
# 2. 缓存未命中,查询数据库
|
||
global_model = db.query(GlobalModel).filter(GlobalModel.id == global_model_id).first()
|
||
|
||
# 3. 写入缓存
|
||
if global_model:
|
||
global_model_dict = ModelCacheService._global_model_to_dict(global_model)
|
||
await CacheService.set(
|
||
cache_key, global_model_dict, ttl_seconds=ModelCacheService.CACHE_TTL
|
||
)
|
||
logger.debug(f"GlobalModel 已缓存: {global_model_id}")
|
||
|
||
return global_model
|
||
|
||
@staticmethod
|
||
async def get_model_by_provider_and_global_model(
|
||
db: Session, provider_id: str, global_model_id: str
|
||
) -> Optional[Model]:
|
||
"""
|
||
通过 Provider ID 和 GlobalModel ID 获取 Model(带缓存)
|
||
|
||
Args:
|
||
db: 数据库会话
|
||
provider_id: Provider ID
|
||
global_model_id: GlobalModel ID
|
||
|
||
Returns:
|
||
Model 对象或 None
|
||
"""
|
||
cache_key = f"model:provider_global:{provider_id}:{global_model_id}"
|
||
|
||
# 1. 尝试从缓存获取
|
||
cached_data = await CacheService.get(cache_key)
|
||
if cached_data:
|
||
logger.debug(
|
||
f"Model 缓存命中(provider+global): {provider_id[:8]}...+{global_model_id[:8]}..."
|
||
)
|
||
return ModelCacheService._dict_to_model(cached_data)
|
||
|
||
# 2. 缓存未命中,查询数据库
|
||
model = (
|
||
db.query(Model)
|
||
.filter(
|
||
Model.provider_id == provider_id,
|
||
Model.global_model_id == global_model_id,
|
||
Model.is_active == True,
|
||
)
|
||
.first()
|
||
)
|
||
|
||
# 3. 写入缓存
|
||
if model:
|
||
model_dict = ModelCacheService._model_to_dict(model)
|
||
await CacheService.set(cache_key, model_dict, ttl_seconds=ModelCacheService.CACHE_TTL)
|
||
logger.debug(
|
||
f"Model 已缓存(provider+global): {provider_id[:8]}...+{global_model_id[:8]}..."
|
||
)
|
||
|
||
return model
|
||
|
||
@staticmethod
|
||
async def get_global_model_by_name(db: Session, name: str) -> Optional[GlobalModel]:
|
||
"""
|
||
通过名称获取 GlobalModel(带缓存)
|
||
|
||
Args:
|
||
db: 数据库会话
|
||
name: GlobalModel 名称
|
||
|
||
Returns:
|
||
GlobalModel 对象或 None
|
||
"""
|
||
cache_key = f"global_model:name:{name}"
|
||
|
||
# 1. 尝试从缓存获取
|
||
cached_data = await CacheService.get(cache_key)
|
||
if cached_data:
|
||
logger.debug(f"GlobalModel 缓存命中(名称): {name}")
|
||
return ModelCacheService._dict_to_global_model(cached_data)
|
||
|
||
# 2. 缓存未命中,查询数据库
|
||
global_model = db.query(GlobalModel).filter(GlobalModel.name == name).first()
|
||
|
||
# 3. 写入缓存
|
||
if global_model:
|
||
global_model_dict = ModelCacheService._global_model_to_dict(global_model)
|
||
await CacheService.set(
|
||
cache_key, global_model_dict, ttl_seconds=ModelCacheService.CACHE_TTL
|
||
)
|
||
logger.debug(f"GlobalModel 已缓存(名称): {name}")
|
||
|
||
return global_model
|
||
|
||
@staticmethod
|
||
async def invalidate_model_cache(
|
||
model_id: str,
|
||
provider_id: Optional[str] = None,
|
||
global_model_id: Optional[str] = None,
|
||
provider_model_name: Optional[str] = None,
|
||
provider_model_aliases: Optional[list] = None,
|
||
) -> None:
|
||
"""清除 Model 缓存
|
||
|
||
Args:
|
||
model_id: Model ID
|
||
provider_id: Provider ID(用于清除 provider_global 缓存)
|
||
global_model_id: GlobalModel ID(用于清除 provider_global 缓存)
|
||
provider_model_name: provider_model_name(用于清除 resolve 缓存)
|
||
provider_model_aliases: 别名列表(用于清除 resolve 缓存)
|
||
"""
|
||
# 清除 model:id 缓存
|
||
await CacheService.delete(f"model:id:{model_id}")
|
||
|
||
# 清除 provider_global 缓存(如果提供了必要参数)
|
||
if provider_id and global_model_id:
|
||
await CacheService.delete(f"model:provider_global:{provider_id}:{global_model_id}")
|
||
logger.debug(
|
||
f"Model 缓存已清除: {model_id}, provider_global:{provider_id[:8]}...:{global_model_id[:8]}..."
|
||
)
|
||
else:
|
||
logger.debug(f"Model 缓存已清除: {model_id}")
|
||
|
||
# 清除 resolve 缓存(provider_model_name 和 aliases 可能都被用作解析 key)
|
||
resolve_keys_to_clear = []
|
||
if provider_model_name:
|
||
resolve_keys_to_clear.append(provider_model_name)
|
||
if provider_model_aliases:
|
||
for alias_entry in provider_model_aliases:
|
||
if isinstance(alias_entry, dict):
|
||
alias_name = alias_entry.get("name", "").strip()
|
||
if alias_name:
|
||
resolve_keys_to_clear.append(alias_name)
|
||
|
||
for key in resolve_keys_to_clear:
|
||
await CacheService.delete(f"global_model:resolve:{key}")
|
||
|
||
if resolve_keys_to_clear:
|
||
logger.debug(f"Model resolve 缓存已清除: {resolve_keys_to_clear}")
|
||
|
||
@staticmethod
|
||
async def invalidate_global_model_cache(global_model_id: str, name: Optional[str] = None) -> None:
|
||
"""清除 GlobalModel 缓存"""
|
||
await CacheService.delete(f"global_model:id:{global_model_id}")
|
||
if name:
|
||
await CacheService.delete(f"global_model:name:{name}")
|
||
# 同时清除 resolve 缓存,因为 GlobalModel.name 也是一个 resolve key
|
||
await CacheService.delete(f"global_model:resolve:{name}")
|
||
logger.debug(f"GlobalModel 缓存已清除: {global_model_id}")
|
||
|
||
@staticmethod
|
||
async def resolve_global_model_by_name_or_alias(
|
||
db: Session, model_name: str
|
||
) -> Optional[GlobalModel]:
|
||
"""
|
||
通过名称或别名解析 GlobalModel(带缓存,支持别名匹配)
|
||
|
||
查找顺序:
|
||
1. 检查缓存
|
||
2. 直接匹配 GlobalModel.name
|
||
3. 通过别名匹配(查询 Model 表的 provider_model_name 和 provider_model_aliases)
|
||
|
||
Args:
|
||
db: 数据库会话
|
||
model_name: 模型名称(可以是 GlobalModel.name 或别名)
|
||
|
||
Returns:
|
||
GlobalModel 对象或 None
|
||
"""
|
||
start_time = time.time()
|
||
resolution_method = "not_found"
|
||
cache_hit = False
|
||
|
||
normalized_name = model_name.strip()
|
||
if not normalized_name:
|
||
return None
|
||
|
||
cache_key = f"global_model:resolve:{normalized_name}"
|
||
|
||
try:
|
||
# 1. 尝试从缓存获取
|
||
cached_data = await CacheService.get(cache_key)
|
||
if cached_data:
|
||
if cached_data == "NOT_FOUND":
|
||
# 缓存的负结果
|
||
cache_hit = True
|
||
resolution_method = "not_found"
|
||
logger.debug(f"GlobalModel 缓存命中(别名解析-未找到): {normalized_name}")
|
||
return None
|
||
if isinstance(cached_data, dict) and "supported_capabilities" not in cached_data:
|
||
# 兼容旧缓存:字段不全时视为未命中,走 DB 刷新
|
||
logger.debug(f"GlobalModel 缓存命中但 schema 过旧,刷新: {normalized_name}")
|
||
else:
|
||
cache_hit = True
|
||
resolution_method = "direct_match" # 缓存命中时无法区分原始解析方式
|
||
logger.debug(f"GlobalModel 缓存命中(别名解析): {normalized_name}")
|
||
return ModelCacheService._dict_to_global_model(cached_data)
|
||
|
||
# 2. 优先通过 provider_model_name 和别名匹配(Provider 配置的别名优先级最高)
|
||
from sqlalchemy import or_
|
||
|
||
from src.models.database import Provider
|
||
|
||
# 构建精确的别名匹配条件
|
||
# 注意:provider_model_aliases 是 JSONB 数组,需要使用 PostgreSQL 的 JSONB 操作符
|
||
# 对于 SQLite,会在 Python 层面进行过滤
|
||
try:
|
||
# 尝试使用 PostgreSQL 的 JSONB 查询(更高效)
|
||
# 使用 json.dumps 确保正确转义特殊字符,避免 SQL 注入
|
||
jsonb_pattern = json.dumps([{"name": normalized_name}])
|
||
models_with_global = (
|
||
db.query(Model, GlobalModel)
|
||
.join(Provider, Model.provider_id == Provider.id)
|
||
.join(GlobalModel, Model.global_model_id == GlobalModel.id)
|
||
.filter(
|
||
Provider.is_active == True,
|
||
Model.is_active == True,
|
||
GlobalModel.is_active == True,
|
||
or_(
|
||
Model.provider_model_name == normalized_name,
|
||
# PostgreSQL JSONB 查询:检查数组中是否有包含 {"name": "xxx"} 的元素
|
||
Model.provider_model_aliases.op("@>")(jsonb_pattern),
|
||
),
|
||
)
|
||
.all()
|
||
)
|
||
except (OperationalError, ProgrammingError) as e:
|
||
# JSONB 操作符不支持(如 SQLite),回退到加载匹配 provider_model_name 的 Model
|
||
# 并在 Python 层过滤 aliases
|
||
logger.debug(
|
||
f"JSONB 查询失败,回退到 Python 过滤: {e}",
|
||
)
|
||
# 优化:先用 provider_model_name 缩小范围,再加载其他可能匹配的记录
|
||
models_with_global = (
|
||
db.query(Model, GlobalModel)
|
||
.join(Provider, Model.provider_id == Provider.id)
|
||
.join(GlobalModel, Model.global_model_id == GlobalModel.id)
|
||
.filter(
|
||
Provider.is_active == True,
|
||
Model.is_active == True,
|
||
GlobalModel.is_active == True,
|
||
)
|
||
.all()
|
||
)
|
||
|
||
# 用于存储匹配结果:{(model_id, global_model_id): (GlobalModel, match_type, priority)}
|
||
# 使用字典去重,同一个 Model 只保留优先级最高的匹配
|
||
matched_models_dict = {}
|
||
|
||
# 遍历查询结果进行匹配
|
||
for model, gm in models_with_global:
|
||
key = (model.id, gm.id)
|
||
|
||
# 检查 provider_model_aliases 是否匹配(优先级更高)
|
||
if model.provider_model_aliases:
|
||
for alias_entry in model.provider_model_aliases:
|
||
if isinstance(alias_entry, dict):
|
||
alias_name = alias_entry.get("name", "").strip()
|
||
if alias_name == normalized_name:
|
||
# alias 优先级为 0(最高),覆盖任何已存在的匹配
|
||
matched_models_dict[key] = (gm, "alias", 0)
|
||
logger.debug(
|
||
f"模型名称 '{normalized_name}' 通过别名匹配到 "
|
||
f"GlobalModel: {gm.name} (Model: {model.id[:8]}...)"
|
||
)
|
||
break
|
||
|
||
# 如果还没有匹配(或只有 provider_model_name 匹配),检查 provider_model_name
|
||
if key not in matched_models_dict or matched_models_dict[key][1] != "alias":
|
||
if model.provider_model_name == normalized_name:
|
||
# provider_model_name 优先级为 1(兜底),只在没有 alias 匹配时使用
|
||
if key not in matched_models_dict:
|
||
matched_models_dict[key] = (gm, "provider_model_name", 1)
|
||
logger.debug(
|
||
f"模型名称 '{normalized_name}' 通过 provider_model_name 匹配到 "
|
||
f"GlobalModel: {gm.name} (Model: {model.id[:8]}...)"
|
||
)
|
||
|
||
# 如果通过 provider_model_name/alias 找到了,直接返回
|
||
if matched_models_dict:
|
||
# 转换为列表并排序:按 priority(alias=0 优先)、然后按 GlobalModel.name
|
||
matched_global_models = [
|
||
(gm, match_type) for gm, match_type, priority in matched_models_dict.values()
|
||
]
|
||
matched_global_models.sort(
|
||
key=lambda item: (
|
||
0 if item[1] == "alias" else 1, # alias 优先
|
||
item[0].name # 同优先级按名称排序(确定性)
|
||
)
|
||
)
|
||
|
||
# 记录解析方式
|
||
resolution_method = matched_global_models[0][1]
|
||
|
||
if len(matched_global_models) > 1:
|
||
# 检测到冲突
|
||
unique_models = {gm.id: gm for gm, _ in matched_global_models}
|
||
if len(unique_models) > 1:
|
||
model_names = [gm.name for gm in unique_models.values()]
|
||
logger.warning(
|
||
f"模型冲突: 名称 '{normalized_name}' 匹配到多个不同的 GlobalModel: "
|
||
f"{', '.join(model_names)},使用第一个匹配结果(别名优先)"
|
||
)
|
||
# 记录冲突指标
|
||
model_alias_conflict_total.inc()
|
||
|
||
# 返回第一个匹配的 GlobalModel
|
||
result_global_model: GlobalModel = matched_global_models[0][0]
|
||
global_model_dict = ModelCacheService._global_model_to_dict(result_global_model)
|
||
await CacheService.set(
|
||
cache_key, global_model_dict, ttl_seconds=ModelCacheService.CACHE_TTL
|
||
)
|
||
logger.debug(
|
||
f"GlobalModel 已缓存(别名解析-{resolution_method}): {normalized_name} -> {result_global_model.name}"
|
||
)
|
||
return result_global_model
|
||
|
||
# 3. 如果通过 provider 别名没找到,最后尝试直接通过 GlobalModel.name 查找
|
||
global_model = (
|
||
db.query(GlobalModel)
|
||
.filter(GlobalModel.name == normalized_name, GlobalModel.is_active == True)
|
||
.first()
|
||
)
|
||
|
||
if global_model:
|
||
resolution_method = "direct_match"
|
||
# 缓存结果
|
||
global_model_dict = ModelCacheService._global_model_to_dict(global_model)
|
||
await CacheService.set(
|
||
cache_key, global_model_dict, ttl_seconds=ModelCacheService.CACHE_TTL
|
||
)
|
||
logger.debug(f"GlobalModel 已缓存(别名解析-直接匹配): {normalized_name}")
|
||
return global_model
|
||
|
||
# 4. 完全未找到
|
||
resolution_method = "not_found"
|
||
# 未找到匹配,缓存负结果
|
||
await CacheService.set(
|
||
cache_key, "NOT_FOUND", ttl_seconds=ModelCacheService.CACHE_TTL
|
||
)
|
||
logger.debug(f"GlobalModel 未找到(别名解析): {normalized_name}")
|
||
return None
|
||
|
||
finally:
|
||
# 记录监控指标
|
||
duration = time.time() - start_time
|
||
model_alias_resolution_total.labels(
|
||
method=resolution_method, cache_hit=str(cache_hit).lower()
|
||
).inc()
|
||
model_alias_resolution_duration_seconds.labels(method=resolution_method).observe(
|
||
duration
|
||
)
|
||
|
||
@staticmethod
|
||
def _model_to_dict(model: Model) -> dict:
|
||
"""将 Model 对象转换为字典"""
|
||
return {
|
||
"id": model.id,
|
||
"provider_id": model.provider_id,
|
||
"global_model_id": model.global_model_id,
|
||
"provider_model_name": model.provider_model_name,
|
||
"provider_model_aliases": getattr(model, "provider_model_aliases", None),
|
||
"is_active": model.is_active,
|
||
"is_available": model.is_available if hasattr(model, "is_available") else True,
|
||
"price_per_request": (
|
||
float(model.price_per_request) if model.price_per_request else None
|
||
),
|
||
"tiered_pricing": model.tiered_pricing,
|
||
"supports_vision": model.supports_vision,
|
||
"supports_function_calling": model.supports_function_calling,
|
||
"supports_streaming": model.supports_streaming,
|
||
"supports_extended_thinking": model.supports_extended_thinking,
|
||
"supports_image_generation": getattr(model, "supports_image_generation", None),
|
||
"config": model.config,
|
||
}
|
||
|
||
@staticmethod
|
||
def _dict_to_model(model_dict: dict) -> Model:
|
||
"""从字典重建 Model 对象"""
|
||
model = Model(
|
||
id=model_dict["id"],
|
||
provider_id=model_dict["provider_id"],
|
||
global_model_id=model_dict["global_model_id"],
|
||
provider_model_name=model_dict["provider_model_name"],
|
||
provider_model_aliases=model_dict.get("provider_model_aliases"),
|
||
is_active=model_dict["is_active"],
|
||
is_available=model_dict.get("is_available", True),
|
||
price_per_request=model_dict.get("price_per_request"),
|
||
tiered_pricing=model_dict.get("tiered_pricing"),
|
||
supports_vision=model_dict.get("supports_vision"),
|
||
supports_function_calling=model_dict.get("supports_function_calling"),
|
||
supports_streaming=model_dict.get("supports_streaming"),
|
||
supports_extended_thinking=model_dict.get("supports_extended_thinking"),
|
||
supports_image_generation=model_dict.get("supports_image_generation"),
|
||
config=model_dict.get("config"),
|
||
)
|
||
return model
|
||
|
||
@staticmethod
|
||
def _global_model_to_dict(global_model: GlobalModel) -> dict:
|
||
"""将 GlobalModel 对象转换为字典"""
|
||
return {
|
||
"id": global_model.id,
|
||
"name": global_model.name,
|
||
"display_name": global_model.display_name,
|
||
"default_supports_vision": global_model.default_supports_vision,
|
||
"default_supports_function_calling": global_model.default_supports_function_calling,
|
||
"default_supports_streaming": global_model.default_supports_streaming,
|
||
"default_supports_extended_thinking": global_model.default_supports_extended_thinking,
|
||
"default_supports_image_generation": global_model.default_supports_image_generation,
|
||
"supported_capabilities": global_model.supported_capabilities,
|
||
"is_active": global_model.is_active,
|
||
"description": global_model.description,
|
||
}
|
||
|
||
@staticmethod
|
||
def _dict_to_global_model(global_model_dict: dict) -> GlobalModel:
|
||
"""从字典重建 GlobalModel 对象"""
|
||
global_model = GlobalModel(
|
||
id=global_model_dict["id"],
|
||
name=global_model_dict["name"],
|
||
display_name=global_model_dict.get("display_name"),
|
||
default_supports_vision=global_model_dict.get("default_supports_vision", False),
|
||
default_supports_function_calling=global_model_dict.get(
|
||
"default_supports_function_calling", False
|
||
),
|
||
default_supports_streaming=global_model_dict.get("default_supports_streaming", True),
|
||
default_supports_extended_thinking=global_model_dict.get(
|
||
"default_supports_extended_thinking", False
|
||
),
|
||
default_supports_image_generation=global_model_dict.get(
|
||
"default_supports_image_generation", False
|
||
),
|
||
supported_capabilities=global_model_dict.get("supported_capabilities") or [],
|
||
is_active=global_model_dict.get("is_active", True),
|
||
description=global_model_dict.get("description"),
|
||
)
|
||
return global_model
|