Files
Aether/src/api/handlers/claude/converter.py
2025-12-10 20:52:44 +08:00

491 lines
16 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

"""
OpenAI -> Claude 格式转换器
将 OpenAI Chat Completions API 格式转换为 Claude Messages API 格式。
"""
from __future__ import annotations
import json
import time
import uuid
from typing import Any, Dict, List, Optional, Union
from pydantic import BaseModel
class OpenAIToClaudeConverter:
"""
OpenAI -> Claude 格式转换器
支持:
- 请求转换OpenAI Chat Request -> Claude Request
- 响应转换OpenAI Chat Response -> Claude Response
- 流式转换OpenAI SSE -> Claude SSE
"""
# 内容类型常量
CONTENT_TYPE_TEXT = "text"
CONTENT_TYPE_IMAGE = "image"
CONTENT_TYPE_TOOL_USE = "tool_use"
CONTENT_TYPE_TOOL_RESULT = "tool_result"
# 停止原因映射OpenAI -> Claude
FINISH_REASON_MAP = {
"stop": "end_turn",
"length": "max_tokens",
"tool_calls": "tool_use",
"function_call": "tool_use",
"content_filter": "end_turn",
}
def __init__(self, model_mapping: Optional[Dict[str, str]] = None):
"""
Args:
model_mapping: OpenAI 模型到 Claude 模型的映射
"""
self._model_mapping = model_mapping or {}
# ==================== 请求转换 ====================
def convert_request(self, request: Union[Dict[str, Any], BaseModel]) -> Dict[str, Any]:
"""
将 OpenAI 请求转换为 Claude 格式
Args:
request: OpenAI 请求Dict 或 Pydantic 模型)
Returns:
Claude 格式的请求字典
"""
if hasattr(request, "model_dump"):
data = request.model_dump(exclude_none=True)
else:
data = dict(request)
# 模型映射
model = data.get("model", "")
claude_model = self._model_mapping.get(model, model)
# 处理消息
system_content: Optional[str] = None
claude_messages: List[Dict[str, Any]] = []
for message in data.get("messages", []):
role = message.get("role")
# 提取 system 消息
if role == "system":
system_content = self._collapse_content(message.get("content"))
continue
# 转换其他消息
converted = self._convert_message(message)
if converted:
claude_messages.append(converted)
# 构建 Claude 请求
result: Dict[str, Any] = {
"model": claude_model,
"messages": claude_messages,
"max_tokens": data.get("max_tokens") or 4096,
}
# 可选参数
if data.get("temperature") is not None:
result["temperature"] = data["temperature"]
if data.get("top_p") is not None:
result["top_p"] = data["top_p"]
if data.get("stream"):
result["stream"] = data["stream"]
if data.get("stop"):
result["stop_sequences"] = self._convert_stop(data["stop"])
if system_content:
result["system"] = system_content
# 工具转换
tools = self._convert_tools(data.get("tools"))
if tools:
result["tools"] = tools
tool_choice = self._convert_tool_choice(data.get("tool_choice"))
if tool_choice:
result["tool_choice"] = tool_choice
return result
def _convert_message(self, message: Dict[str, Any]) -> Optional[Dict[str, Any]]:
"""转换单条消息"""
role = message.get("role")
if role == "user":
return self._convert_user_message(message)
if role == "assistant":
return self._convert_assistant_message(message)
if role == "tool":
return self._convert_tool_message(message)
return None
def _convert_user_message(self, message: Dict[str, Any]) -> Dict[str, Any]:
"""转换用户消息"""
content = message.get("content")
if isinstance(content, str) or content is None:
return {"role": "user", "content": content or ""}
# 转换内容数组
claude_content: List[Dict[str, Any]] = []
for item in content:
item_type = item.get("type")
if item_type == "text":
claude_content.append(
{"type": self.CONTENT_TYPE_TEXT, "text": item.get("text", "")}
)
elif item_type == "image_url":
image_url = (item.get("image_url") or {}).get("url", "")
claude_content.append(self._convert_image_url(image_url))
return {"role": "user", "content": claude_content}
def _convert_assistant_message(self, message: Dict[str, Any]) -> Dict[str, Any]:
"""转换助手消息"""
content_blocks: List[Dict[str, Any]] = []
# 处理文本内容
content = message.get("content")
if isinstance(content, str):
content_blocks.append({"type": self.CONTENT_TYPE_TEXT, "text": content})
elif isinstance(content, list):
for part in content:
if part.get("type") == "text":
content_blocks.append(
{"type": self.CONTENT_TYPE_TEXT, "text": part.get("text", "")}
)
# 处理工具调用
for tool_call in message.get("tool_calls") or []:
if tool_call.get("type") == "function":
function = tool_call.get("function", {})
arguments = function.get("arguments", "{}")
try:
input_data = json.loads(arguments)
except json.JSONDecodeError:
input_data = {"raw": arguments}
content_blocks.append(
{
"type": self.CONTENT_TYPE_TOOL_USE,
"id": tool_call.get("id", ""),
"name": function.get("name", ""),
"input": input_data,
}
)
# 简化单文本内容
if not content_blocks:
return {"role": "assistant", "content": ""}
if len(content_blocks) == 1 and content_blocks[0]["type"] == self.CONTENT_TYPE_TEXT:
return {"role": "assistant", "content": content_blocks[0]["text"]}
return {"role": "assistant", "content": content_blocks}
def _convert_tool_message(self, message: Dict[str, Any]) -> Dict[str, Any]:
"""转换工具结果消息"""
tool_content = message.get("content", "")
# 尝试解析 JSON
parsed_content = tool_content
if isinstance(tool_content, str):
try:
parsed_content = json.loads(tool_content)
except json.JSONDecodeError:
pass
tool_block = {
"type": self.CONTENT_TYPE_TOOL_RESULT,
"tool_use_id": message.get("tool_call_id", ""),
"content": parsed_content,
}
return {"role": "user", "content": [tool_block]}
def _convert_tools(
self, tools: Optional[List[Dict[str, Any]]]
) -> Optional[List[Dict[str, Any]]]:
"""转换工具定义"""
if not tools:
return None
result: List[Dict[str, Any]] = []
for tool in tools:
if tool.get("type") != "function":
continue
function = tool.get("function", {})
result.append(
{
"name": function.get("name", ""),
"description": function.get("description"),
"input_schema": function.get("parameters") or {},
}
)
return result if result else None
def _convert_tool_choice(
self, tool_choice: Optional[Union[str, Dict[str, Any]]]
) -> Optional[Dict[str, Any]]:
"""转换工具选择"""
if tool_choice is None:
return None
if tool_choice == "none":
return {"type": "none"}
if tool_choice == "auto":
return {"type": "auto"}
if tool_choice == "required":
return {"type": "any"}
if isinstance(tool_choice, dict) and tool_choice.get("type") == "function":
function = tool_choice.get("function", {})
return {"type": "tool_use", "name": function.get("name", "")}
return {"type": "auto"}
def _convert_image_url(self, image_url: str) -> Dict[str, Any]:
"""转换图片 URL"""
if image_url.startswith("data:"):
header, _, data = image_url.partition(",")
media_type = "image/jpeg"
if ";" in header:
media_type = header.split(";")[0].split(":")[-1]
return {
"type": self.CONTENT_TYPE_IMAGE,
"source": {
"type": "base64",
"media_type": media_type,
"data": data,
},
}
return {"type": self.CONTENT_TYPE_TEXT, "text": f"[Image: {image_url}]"}
def _convert_stop(self, stop: Optional[Union[str, List[str]]]) -> Optional[List[str]]:
"""转换停止序列"""
if stop is None:
return None
if isinstance(stop, str):
return [stop]
return stop
# ==================== 响应转换 ====================
def convert_response(self, response: Dict[str, Any]) -> Dict[str, Any]:
"""
将 OpenAI 响应转换为 Claude 格式
Args:
response: OpenAI 响应字典
Returns:
Claude 格式的响应字典
"""
choices = response.get("choices", [])
if not choices:
return self._empty_claude_response(response)
choice = choices[0]
message = choice.get("message", {})
# 构建 content 数组
content: List[Dict[str, Any]] = []
# 处理文本
text_content = message.get("content")
if text_content:
content.append(
{
"type": self.CONTENT_TYPE_TEXT,
"text": text_content,
}
)
# 处理工具调用
for tool_call in message.get("tool_calls") or []:
if tool_call.get("type") == "function":
function = tool_call.get("function", {})
arguments = function.get("arguments", "{}")
try:
input_data = json.loads(arguments)
except json.JSONDecodeError:
input_data = {"raw": arguments}
content.append(
{
"type": self.CONTENT_TYPE_TOOL_USE,
"id": tool_call.get("id", ""),
"name": function.get("name", ""),
"input": input_data,
}
)
# 转换 finish_reason
finish_reason = choice.get("finish_reason")
stop_reason = self.FINISH_REASON_MAP.get(finish_reason, "end_turn")
# 转换 usage
usage = response.get("usage", {})
claude_usage = {
"input_tokens": usage.get("prompt_tokens", 0),
"output_tokens": usage.get("completion_tokens", 0),
}
return {
"id": f"msg_{response.get('id', uuid.uuid4().hex[:8])}",
"type": "message",
"role": "assistant",
"model": response.get("model", ""),
"content": content,
"stop_reason": stop_reason,
"stop_sequence": None,
"usage": claude_usage,
}
def _empty_claude_response(self, response: Dict[str, Any]) -> Dict[str, Any]:
"""构建空的 Claude 响应"""
return {
"id": f"msg_{response.get('id', uuid.uuid4().hex[:8])}",
"type": "message",
"role": "assistant",
"model": response.get("model", ""),
"content": [],
"stop_reason": "end_turn",
"stop_sequence": None,
"usage": {"input_tokens": 0, "output_tokens": 0},
}
# ==================== 流式转换 ====================
def convert_stream_chunk(
self,
chunk: Dict[str, Any],
model: str = "",
message_id: Optional[str] = None,
message_started: bool = False,
) -> List[Dict[str, Any]]:
"""
将 OpenAI SSE chunk 转换为 Claude SSE 事件
Args:
chunk: OpenAI SSE chunk
model: 模型名称
message_id: 消息 ID
message_started: 是否已发送 message_start
Returns:
Claude SSE 事件列表
"""
events: List[Dict[str, Any]] = []
choices = chunk.get("choices", [])
if not choices:
return events
choice = choices[0]
delta = choice.get("delta", {})
finish_reason = choice.get("finish_reason")
# 处理角色(第一个 chunk
role = delta.get("role")
if role and not message_started:
msg_id = message_id or f"msg_{uuid.uuid4().hex[:8]}"
events.append(
{
"type": "message_start",
"message": {
"id": msg_id,
"type": "message",
"role": role,
"model": model,
"content": [],
"stop_reason": None,
"stop_sequence": None,
},
}
)
# 处理文本内容
content_delta = delta.get("content")
if isinstance(content_delta, str):
events.append(
{
"type": "content_block_delta",
"index": 0,
"delta": {"type": "text_delta", "text": content_delta},
}
)
# 处理工具调用
tool_calls = delta.get("tool_calls", [])
for tool_call in tool_calls:
index = tool_call.get("index", 0)
# 工具调用开始
if "id" in tool_call:
function = tool_call.get("function", {})
events.append(
{
"type": "content_block_start",
"index": index,
"content_block": {
"type": self.CONTENT_TYPE_TOOL_USE,
"id": tool_call["id"],
"name": function.get("name", ""),
},
}
)
# 工具调用参数增量
function = tool_call.get("function", {})
if "arguments" in function:
events.append(
{
"type": "content_block_delta",
"index": index,
"delta": {
"type": "input_json_delta",
"partial_json": function.get("arguments", ""),
},
}
)
# 处理结束
if finish_reason:
stop_reason = self.FINISH_REASON_MAP.get(finish_reason, "end_turn")
events.append(
{
"type": "message_delta",
"delta": {"stop_reason": stop_reason},
}
)
return events
# ==================== 工具方法 ====================
def _collapse_content(
self, content: Optional[Union[str, List[Dict[str, Any]]]]
) -> Optional[str]:
"""折叠内容为字符串"""
if isinstance(content, str):
return content
if not content:
return None
text_parts = [part.get("text", "") for part in content if part.get("type") == "text"]
return "\n\n".join(filter(None, text_parts)) or None
__all__ = ["OpenAIToClaudeConverter"]