""" Model 映射缓存服务 - 减少模型查询 架构说明 ======== 本服务采用混合 async/sync 模式: - 缓存操作(CacheService):真正的 async,使用 aioredis - 数据库查询(db.query):同步的 SQLAlchemy Session 设计决策 -------- 1. 保持 async 方法签名:因为缓存命中时完全异步,性能最优 2. 缓存未命中时的同步查询:FastAPI 会在线程池中执行,不会阻塞事件循环 3. 调用方必须在 async 上下文中使用 await 使用示例 -------- global_model = await ModelCacheService.resolve_global_model_by_name_or_alias(db, "gpt-4") """ import time from typing import List, Optional from sqlalchemy.orm import Session from src.config.constants import CacheTTL from src.core.cache_service import CacheService from src.core.logger import logger from src.core.metrics import ( model_mapping_conflict_total, model_mapping_resolution_duration_seconds, model_mapping_resolution_total, ) from src.models.database import GlobalModel, Model class ModelCacheService: """Model 映射缓存服务 提供 GlobalModel 和 Model 的缓存查询功能,减少数据库访问。 所有公开方法均为 async,需要在 async 上下文中调用。 """ # 缓存 TTL(秒)- 使用统一常量 CACHE_TTL = CacheTTL.MODEL @staticmethod async def get_model_by_id(db: Session, model_id: str) -> Optional[Model]: """ 获取 Model(带缓存) Args: db: 数据库会话 model_id: Model ID Returns: Model 对象或 None """ cache_key = f"model:id:{model_id}" # 1. 尝试从缓存获取 cached_data = await CacheService.get(cache_key) if cached_data: logger.debug(f"Model 缓存命中: {model_id}") return ModelCacheService._dict_to_model(cached_data) # 2. 缓存未命中,查询数据库 model = db.query(Model).filter(Model.id == model_id).first() # 3. 写入缓存 if model: model_dict = ModelCacheService._model_to_dict(model) await CacheService.set(cache_key, model_dict, ttl_seconds=ModelCacheService.CACHE_TTL) logger.debug(f"Model 已缓存: {model_id}") return model @staticmethod async def get_global_model_by_id(db: Session, global_model_id: str) -> Optional[GlobalModel]: """ 获取 GlobalModel(带缓存) Args: db: 数据库会话 global_model_id: GlobalModel ID Returns: GlobalModel 对象或 None """ cache_key = f"global_model:id:{global_model_id}" # 1. 尝试从缓存获取 cached_data = await CacheService.get(cache_key) if cached_data: logger.debug(f"GlobalModel 缓存命中: {global_model_id}") return ModelCacheService._dict_to_global_model(cached_data) # 2. 缓存未命中,查询数据库 global_model = db.query(GlobalModel).filter(GlobalModel.id == global_model_id).first() # 3. 写入缓存 if global_model: global_model_dict = ModelCacheService._global_model_to_dict(global_model) await CacheService.set( cache_key, global_model_dict, ttl_seconds=ModelCacheService.CACHE_TTL ) logger.debug(f"GlobalModel 已缓存: {global_model_id}") return global_model @staticmethod async def get_model_by_provider_and_global_model( db: Session, provider_id: str, global_model_id: str ) -> Optional[Model]: """ 通过 Provider ID 和 GlobalModel ID 获取 Model(带缓存) Args: db: 数据库会话 provider_id: Provider ID global_model_id: GlobalModel ID Returns: Model 对象或 None """ cache_key = f"model:provider_global:{provider_id}:{global_model_id}" hit_count_key = f"model:provider_global:hits:{provider_id}:{global_model_id}" # 1. 尝试从缓存获取 cached_data = await CacheService.get(cache_key) if cached_data: logger.debug( f"Model 缓存命中(provider+global): {provider_id[:8]}...+{global_model_id[:8]}..." ) # 递增命中计数,同时刷新 TTL await CacheService.incr(hit_count_key, ttl_seconds=ModelCacheService.CACHE_TTL) return ModelCacheService._dict_to_model(cached_data) # 2. 缓存未命中,查询数据库 model = ( db.query(Model) .filter( Model.provider_id == provider_id, Model.global_model_id == global_model_id, Model.is_active == True, ) .first() ) # 3. 写入缓存 if model: model_dict = ModelCacheService._model_to_dict(model) await CacheService.set(cache_key, model_dict, ttl_seconds=ModelCacheService.CACHE_TTL) # 重置命中计数(新缓存从1开始) await CacheService.set(hit_count_key, 1, ttl_seconds=ModelCacheService.CACHE_TTL) logger.debug( f"Model 已缓存(provider+global): {provider_id[:8]}...+{global_model_id[:8]}..." ) return model @staticmethod async def get_global_model_by_name(db: Session, name: str) -> Optional[GlobalModel]: """ 通过名称获取 GlobalModel(带缓存) Args: db: 数据库会话 name: GlobalModel 名称 Returns: GlobalModel 对象或 None """ cache_key = f"global_model:name:{name}" # 1. 尝试从缓存获取 cached_data = await CacheService.get(cache_key) if cached_data: logger.debug(f"GlobalModel 缓存命中(名称): {name}") return ModelCacheService._dict_to_global_model(cached_data) # 2. 缓存未命中,查询数据库 global_model = db.query(GlobalModel).filter(GlobalModel.name == name).first() # 3. 写入缓存 if global_model: global_model_dict = ModelCacheService._global_model_to_dict(global_model) await CacheService.set( cache_key, global_model_dict, ttl_seconds=ModelCacheService.CACHE_TTL ) logger.debug(f"GlobalModel 已缓存(名称): {name}") return global_model @staticmethod async def invalidate_model_cache( model_id: str, provider_id: Optional[str] = None, global_model_id: Optional[str] = None, provider_model_name: Optional[str] = None, provider_model_aliases: Optional[list] = None, ) -> None: """清除 Model 缓存 Args: model_id: Model ID provider_id: Provider ID(用于清除 provider_global 缓存) global_model_id: GlobalModel ID(用于清除 provider_global 缓存) provider_model_name: provider_model_name(用于清除 resolve 缓存) provider_model_aliases: 映射名称列表(用于清除 resolve 缓存) """ # 清除 model:id 缓存 await CacheService.delete(f"model:id:{model_id}") # 清除 provider_global 缓存及其命中计数(如果提供了必要参数) if provider_id and global_model_id: await CacheService.delete(f"model:provider_global:{provider_id}:{global_model_id}") await CacheService.delete(f"model:provider_global:hits:{provider_id}:{global_model_id}") logger.debug( f"Model 缓存已清除: {model_id}, provider_global:{provider_id[:8]}...:{global_model_id[:8]}..." ) else: logger.debug(f"Model 缓存已清除: {model_id}") # 清除 resolve 缓存(provider_model_name 和 aliases 可能都被用作解析 key) resolve_keys_to_clear = [] if provider_model_name: resolve_keys_to_clear.append(provider_model_name) if provider_model_aliases: for alias_entry in provider_model_aliases: if isinstance(alias_entry, dict): alias_name = alias_entry.get("name", "").strip() if alias_name: resolve_keys_to_clear.append(alias_name) for key in resolve_keys_to_clear: await CacheService.delete(f"global_model:resolve:{key}") if resolve_keys_to_clear: logger.debug(f"Model resolve 缓存已清除: {resolve_keys_to_clear}") @staticmethod async def invalidate_global_model_cache(global_model_id: str, name: Optional[str] = None) -> None: """清除 GlobalModel 缓存""" await CacheService.delete(f"global_model:id:{global_model_id}") if name: await CacheService.delete(f"global_model:name:{name}") # 同时清除 resolve 缓存,因为 GlobalModel.name 也是一个 resolve key await CacheService.delete(f"global_model:resolve:{name}") logger.debug(f"GlobalModel 缓存已清除: {global_model_id}") @staticmethod async def resolve_global_model_by_name_or_alias( db: Session, model_name: str ) -> Optional[GlobalModel]: """ 通过名称解析 GlobalModel(带缓存) 查找顺序: 1. 检查缓存 2. 通过 provider_model_name 匹配(查询 Model 表) 3. 直接匹配 GlobalModel.name(兜底) 注意:此方法不使用 provider_model_aliases 进行全局解析。 provider_model_aliases 是 Provider 级别的别名配置,只在特定 Provider 上下文中生效, 由 resolve_provider_model() 处理。 Args: db: 数据库会话 model_name: 模型名称(可以是 GlobalModel.name 或 provider_model_name) Returns: GlobalModel 对象或 None """ start_time = time.time() resolution_method = "not_found" cache_hit = False normalized_name = model_name.strip() if not normalized_name: return None cache_key = f"global_model:resolve:{normalized_name}" try: # 1. 尝试从缓存获取 cached_data = await CacheService.get(cache_key) if cached_data: if cached_data == "NOT_FOUND": # 缓存的负结果 cache_hit = True resolution_method = "not_found" logger.debug(f"GlobalModel 缓存命中(映射解析-未找到): {normalized_name}") return None if isinstance(cached_data, dict) and "supported_capabilities" not in cached_data: # 兼容旧缓存:字段不全时视为未命中,走 DB 刷新 logger.debug(f"GlobalModel 缓存命中但 schema 过旧,刷新: {normalized_name}") else: cache_hit = True resolution_method = "direct_match" # 缓存命中时无法区分原始解析方式 logger.debug(f"GlobalModel 缓存命中(映射解析): {normalized_name}") return ModelCacheService._dict_to_global_model(cached_data) # 2. 通过 provider_model_name 匹配(不考虑 provider_model_aliases) # 重要:provider_model_aliases 是 Provider 级别的别名配置,只在特定 Provider 上下文中生效 # 全局解析不应该受到某个 Provider 别名配置的影响 # 例如:Provider A 把 "haiku" 映射到 "sonnet",不应该影响 Provider B 的 "haiku" 解析 from src.models.database import Provider models_with_global = ( db.query(Model, GlobalModel) .join(Provider, Model.provider_id == Provider.id) .join(GlobalModel, Model.global_model_id == GlobalModel.id) .filter( Provider.is_active == True, Model.is_active == True, GlobalModel.is_active == True, Model.provider_model_name == normalized_name, ) .all() ) # 收集匹配的 GlobalModel(只通过 provider_model_name 匹配) matched_global_models: List[GlobalModel] = [] seen_global_model_ids: set[str] = set() for model, gm in models_with_global: if gm.id not in seen_global_model_ids: seen_global_model_ids.add(gm.id) matched_global_models.append(gm) logger.debug( f"模型名称 '{normalized_name}' 通过 provider_model_name 匹配到 " f"GlobalModel: {gm.name} (Model: {model.id[:8]}...)" ) # 如果通过 provider_model_name 找到了,返回 if matched_global_models: resolution_method = "provider_model_name" if len(matched_global_models) > 1: # 检测到冲突(多个不同的 GlobalModel 有相同的 provider_model_name) model_names = [gm.name for gm in matched_global_models if gm.name] logger.warning( f"模型映射冲突: 名称 '{normalized_name}' 匹配到多个不同的 GlobalModel: " f"{', '.join(model_names)},使用第一个匹配结果" ) # 记录冲突指标 model_mapping_conflict_total.inc() # 返回第一个匹配的 GlobalModel result_global_model = matched_global_models[0] global_model_dict = ModelCacheService._global_model_to_dict(result_global_model) await CacheService.set( cache_key, global_model_dict, ttl_seconds=ModelCacheService.CACHE_TTL ) logger.debug( f"GlobalModel 已缓存(映射解析-{resolution_method}): {normalized_name} -> {result_global_model.name}" ) return result_global_model # 3. 如果通过 provider 映射没找到,最后尝试直接通过 GlobalModel.name 查找 global_model = ( db.query(GlobalModel) .filter(GlobalModel.name == normalized_name, GlobalModel.is_active == True) .first() ) if global_model: resolution_method = "direct_match" # 缓存结果 global_model_dict = ModelCacheService._global_model_to_dict(global_model) await CacheService.set( cache_key, global_model_dict, ttl_seconds=ModelCacheService.CACHE_TTL ) logger.debug(f"GlobalModel 已缓存(映射解析-直接匹配): {normalized_name}") return global_model # 4. 完全未找到 resolution_method = "not_found" # 未找到匹配,缓存负结果 await CacheService.set( cache_key, "NOT_FOUND", ttl_seconds=ModelCacheService.CACHE_TTL ) logger.debug(f"GlobalModel 未找到(映射解析): {normalized_name}") return None finally: # 记录监控指标 duration = time.time() - start_time model_mapping_resolution_total.labels( method=resolution_method, cache_hit=str(cache_hit).lower() ).inc() model_mapping_resolution_duration_seconds.labels(method=resolution_method).observe( duration ) @staticmethod def _model_to_dict(model: Model) -> dict: """将 Model 对象转换为字典""" return { "id": model.id, "provider_id": model.provider_id, "global_model_id": model.global_model_id, "provider_model_name": model.provider_model_name, "provider_model_aliases": getattr(model, "provider_model_aliases", None), "is_active": model.is_active, "is_available": model.is_available if hasattr(model, "is_available") else True, "price_per_request": ( float(model.price_per_request) if model.price_per_request is not None else None ), "tiered_pricing": model.tiered_pricing, "supports_vision": model.supports_vision, "supports_function_calling": model.supports_function_calling, "supports_streaming": model.supports_streaming, "supports_extended_thinking": model.supports_extended_thinking, "supports_image_generation": getattr(model, "supports_image_generation", None), "config": model.config, } @staticmethod def _dict_to_model(model_dict: dict) -> Model: """从字典重建 Model 对象""" model = Model( id=model_dict["id"], provider_id=model_dict["provider_id"], global_model_id=model_dict["global_model_id"], provider_model_name=model_dict["provider_model_name"], provider_model_aliases=model_dict.get("provider_model_aliases"), is_active=model_dict["is_active"], is_available=model_dict.get("is_available", True), price_per_request=model_dict.get("price_per_request"), tiered_pricing=model_dict.get("tiered_pricing"), supports_vision=model_dict.get("supports_vision"), supports_function_calling=model_dict.get("supports_function_calling"), supports_streaming=model_dict.get("supports_streaming"), supports_extended_thinking=model_dict.get("supports_extended_thinking"), supports_image_generation=model_dict.get("supports_image_generation"), config=model_dict.get("config"), ) return model @staticmethod def _global_model_to_dict(global_model: GlobalModel) -> dict: """将 GlobalModel 对象转换为字典""" return { "id": global_model.id, "name": global_model.name, "display_name": global_model.display_name, "supported_capabilities": global_model.supported_capabilities, "config": global_model.config, "default_tiered_pricing": global_model.default_tiered_pricing, "default_price_per_request": ( float(global_model.default_price_per_request) if global_model.default_price_per_request is not None else None ), "is_active": global_model.is_active, } @staticmethod def _dict_to_global_model(global_model_dict: dict) -> GlobalModel: """从字典重建 GlobalModel 对象""" global_model = GlobalModel( id=global_model_dict["id"], name=global_model_dict["name"], display_name=global_model_dict.get("display_name"), supported_capabilities=global_model_dict.get("supported_capabilities") or [], config=global_model_dict.get("config"), default_tiered_pricing=global_model_dict.get("default_tiered_pricing"), default_price_per_request=global_model_dict.get("default_price_per_request"), is_active=global_model_dict.get("is_active", True), ) return global_model