""" 自适应并发调整器 - 基于滑动窗口利用率的并发限制调整 核心改进(相对于旧版基于"持续高利用率"的方案): - 使用滑动窗口采样,容忍并发波动 - 基于窗口内高利用率采样比例决策,而非要求连续高利用率 - 增加探测性扩容机制,长时间稳定时主动尝试扩容 AIMD 参数说明: - 扩容:加性增加 (+INCREASE_STEP) - 缩容:乘性减少 (*DECREASE_MULTIPLIER,默认 0.85) """ from datetime import datetime, timezone from typing import Any, Dict, List, Optional, cast from sqlalchemy.orm import Session from src.config.constants import ConcurrencyDefaults from src.core.batch_committer import get_batch_committer from src.core.logger import logger from src.models.database import ProviderAPIKey from src.services.rate_limit.detector import RateLimitInfo, RateLimitType class AdaptiveStrategy: """自适应策略类型""" AIMD = "aimd" # 加性增-乘性减 (Additive Increase Multiplicative Decrease) CONSERVATIVE = "conservative" # 保守策略(只减不增) AGGRESSIVE = "aggressive" # 激进策略(快速探测) class AdaptiveConcurrencyManager: """ 自适应并发管理器 核心算法:基于滑动窗口利用率的 AIMD - 滑动窗口记录最近 N 次请求的利用率 - 当窗口内高利用率采样比例 >= 60% 时触发扩容 - 遇到 429 错误时乘性减少 (*0.85) - 长时间无 429 且有流量时触发探测性扩容 扩容条件(满足任一即可): 1. 滑动窗口扩容:窗口内 >= 60% 的采样利用率 >= 70%,且不在冷却期 2. 探测性扩容:距上次 429 超过 30 分钟,且期间有足够请求量 关键特性: 1. 滑动窗口容忍并发波动,不会因单次低利用率重置 2. 区分并发限制和 RPM 限制 3. 探测性扩容避免长期卡在低限制 4. 记录调整历史 """ # 默认配置 - 使用统一常量 DEFAULT_INITIAL_LIMIT = ConcurrencyDefaults.INITIAL_LIMIT MIN_CONCURRENT_LIMIT = ConcurrencyDefaults.MIN_CONCURRENT_LIMIT MAX_CONCURRENT_LIMIT = ConcurrencyDefaults.MAX_CONCURRENT_LIMIT # AIMD 参数 INCREASE_STEP = ConcurrencyDefaults.INCREASE_STEP DECREASE_MULTIPLIER = ConcurrencyDefaults.DECREASE_MULTIPLIER # 滑动窗口参数 UTILIZATION_WINDOW_SIZE = ConcurrencyDefaults.UTILIZATION_WINDOW_SIZE UTILIZATION_WINDOW_SECONDS = ConcurrencyDefaults.UTILIZATION_WINDOW_SECONDS UTILIZATION_THRESHOLD = ConcurrencyDefaults.UTILIZATION_THRESHOLD HIGH_UTILIZATION_RATIO = ConcurrencyDefaults.HIGH_UTILIZATION_RATIO MIN_SAMPLES_FOR_DECISION = ConcurrencyDefaults.MIN_SAMPLES_FOR_DECISION # 探测性扩容参数 PROBE_INCREASE_INTERVAL_MINUTES = ConcurrencyDefaults.PROBE_INCREASE_INTERVAL_MINUTES PROBE_INCREASE_MIN_REQUESTS = ConcurrencyDefaults.PROBE_INCREASE_MIN_REQUESTS # 记录历史数量 MAX_HISTORY_RECORDS = 20 def __init__(self, strategy: str = AdaptiveStrategy.AIMD): """ 初始化自适应并发管理器 Args: strategy: 调整策略 """ self.strategy = strategy def handle_429_error( self, db: Session, key: ProviderAPIKey, rate_limit_info: RateLimitInfo, current_concurrent: Optional[int] = None, ) -> int: """ 处理429错误,调整并发限制 Args: db: 数据库会话 key: API Key对象 rate_limit_info: 速率限制信息 current_concurrent: 当前并发数 Returns: 调整后的并发限制 """ # max_concurrent=NULL 表示启用自适应,max_concurrent=数字 表示固定限制 is_adaptive = key.max_concurrent is None if not is_adaptive: logger.debug( f"Key {key.id} 设置了固定并发限制 ({key.max_concurrent}),跳过自适应调整" ) return int(key.max_concurrent) # type: ignore[arg-type] # 更新429统计 key.last_429_at = datetime.now(timezone.utc) # type: ignore[assignment] key.last_429_type = rate_limit_info.limit_type # type: ignore[assignment] key.last_concurrent_peak = current_concurrent # type: ignore[assignment] # 遇到 429 错误,清空利用率采样窗口(重新开始收集) key.utilization_samples = [] # type: ignore[assignment] if rate_limit_info.limit_type == RateLimitType.CONCURRENT: # 并发限制:减少并发数 key.concurrent_429_count = int(key.concurrent_429_count or 0) + 1 # type: ignore[assignment] # 获取当前有效限制(自适应模式使用 learned_max_concurrent) old_limit = int(key.learned_max_concurrent or self.DEFAULT_INITIAL_LIMIT) new_limit = self._decrease_limit(old_limit, current_concurrent) logger.warning( f"[CONCURRENT] 并发限制触发: Key {key.id[:8]}... | " f"当前并发: {current_concurrent} | " f"调整: {old_limit} -> {new_limit}" ) # 记录调整历史 self._record_adjustment( key, old_limit=old_limit, new_limit=new_limit, reason="concurrent_429", current_concurrent=current_concurrent, ) # 更新学习到的并发限制 key.learned_max_concurrent = new_limit # type: ignore[assignment] elif rate_limit_info.limit_type == RateLimitType.RPM: # RPM限制:不调整并发,只记录 key.rpm_429_count = int(key.rpm_429_count or 0) + 1 # type: ignore[assignment] logger.info( f"[RPM] RPM限制触发: Key {key.id[:8]}... | " f"retry_after: {rate_limit_info.retry_after}s | " f"不调整并发限制" ) else: # 未知类型:保守处理,轻微减少 logger.warning( f"[UNKNOWN] 未知429类型: Key {key.id[:8]}... | " f"当前并发: {current_concurrent} | " f"保守减少并发" ) old_limit = int(key.learned_max_concurrent or self.DEFAULT_INITIAL_LIMIT) new_limit = max(int(old_limit * 0.9), self.MIN_CONCURRENT_LIMIT) # 减少10% self._record_adjustment( key, old_limit=old_limit, new_limit=new_limit, reason="unknown_429", current_concurrent=current_concurrent, ) key.learned_max_concurrent = new_limit # type: ignore[assignment] db.flush() get_batch_committer().mark_dirty(db) return int(key.learned_max_concurrent or self.DEFAULT_INITIAL_LIMIT) def handle_success( self, db: Session, key: ProviderAPIKey, current_concurrent: int, ) -> Optional[int]: """ 处理成功请求,基于滑动窗口利用率考虑增加并发限制 Args: db: 数据库会话 key: API Key对象 current_concurrent: 当前并发数(必需,用于计算利用率) Returns: 调整后的并发限制(如果有调整),否则返回 None """ # max_concurrent=NULL 表示启用自适应 is_adaptive = key.max_concurrent is None if not is_adaptive: return None current_limit = int(key.learned_max_concurrent or self.DEFAULT_INITIAL_LIMIT) # 计算当前利用率 utilization = float(current_concurrent / current_limit) if current_limit > 0 else 0.0 now = datetime.now(timezone.utc) now_ts = now.timestamp() # 更新滑动窗口 samples = self._update_utilization_window(key, now_ts, utilization) # 检查是否满足扩容条件 increase_reason = self._check_increase_conditions(key, samples, now) if increase_reason and current_limit < self.MAX_CONCURRENT_LIMIT: old_limit = current_limit new_limit = self._increase_limit(current_limit) # 计算窗口统计用于日志 avg_util = sum(s["util"] for s in samples) / len(samples) if samples else 0 high_util_count = sum(1 for s in samples if s["util"] >= self.UTILIZATION_THRESHOLD) high_util_ratio = high_util_count / len(samples) if samples else 0 logger.info( f"[INCREASE] {increase_reason}: Key {key.id[:8]}... | " f"窗口采样: {len(samples)} | " f"平均利用率: {avg_util:.1%} | " f"高利用率比例: {high_util_ratio:.1%} | " f"调整: {old_limit} -> {new_limit}" ) # 记录调整历史 self._record_adjustment( key, old_limit=old_limit, new_limit=new_limit, reason=increase_reason, avg_utilization=round(avg_util, 2), high_util_ratio=round(high_util_ratio, 2), sample_count=len(samples), current_concurrent=current_concurrent, ) # 更新限制 key.learned_max_concurrent = new_limit # type: ignore[assignment] # 如果是探测性扩容,更新探测时间 if increase_reason == "probe_increase": key.last_probe_increase_at = now # type: ignore[assignment] # 扩容后清空采样窗口,重新开始收集 key.utilization_samples = [] # type: ignore[assignment] db.flush() get_batch_committer().mark_dirty(db) return new_limit # 定期持久化采样数据(每5个采样保存一次) if len(samples) % 5 == 0: db.flush() get_batch_committer().mark_dirty(db) return None def _update_utilization_window( self, key: ProviderAPIKey, now_ts: float, utilization: float ) -> List[Dict[str, Any]]: """ 更新利用率滑动窗口 Args: key: API Key对象 now_ts: 当前时间戳 utilization: 当前利用率 Returns: 更新后的采样列表 """ samples: List[Dict[str, Any]] = list(key.utilization_samples or []) # 添加新采样 samples.append({"ts": now_ts, "util": round(utilization, 3)}) # 移除过期采样(超过时间窗口) cutoff_ts = now_ts - self.UTILIZATION_WINDOW_SECONDS samples = [s for s in samples if s["ts"] > cutoff_ts] # 限制采样数量 if len(samples) > self.UTILIZATION_WINDOW_SIZE: samples = samples[-self.UTILIZATION_WINDOW_SIZE:] # 更新到 key 对象 key.utilization_samples = samples # type: ignore[assignment] return samples def _check_increase_conditions( self, key: ProviderAPIKey, samples: List[Dict[str, Any]], now: datetime ) -> Optional[str]: """ 检查是否满足扩容条件 Args: key: API Key对象 samples: 利用率采样列表 now: 当前时间 Returns: 扩容原因(如果满足条件),否则返回 None """ # 检查是否在冷却期 if self._is_in_cooldown(key): return None # 条件1:滑动窗口扩容 if len(samples) >= self.MIN_SAMPLES_FOR_DECISION: high_util_count = sum(1 for s in samples if s["util"] >= self.UTILIZATION_THRESHOLD) high_util_ratio = high_util_count / len(samples) if high_util_ratio >= self.HIGH_UTILIZATION_RATIO: return "high_utilization" # 条件2:探测性扩容(长时间无 429 且有流量) if self._should_probe_increase(key, samples, now): return "probe_increase" return None def _should_probe_increase( self, key: ProviderAPIKey, samples: List[Dict[str, Any]], now: datetime ) -> bool: """ 检查是否应该进行探测性扩容 条件: 1. 距上次 429 超过 PROBE_INCREASE_INTERVAL_MINUTES 分钟 2. 距上次探测性扩容超过 PROBE_INCREASE_INTERVAL_MINUTES 分钟 3. 期间有足够的请求量(采样数 >= PROBE_INCREASE_MIN_REQUESTS) 4. 平均利用率 > 30%(说明确实有使用需求) Args: key: API Key对象 samples: 利用率采样列表 now: 当前时间 Returns: 是否应该探测性扩容 """ probe_interval_seconds = self.PROBE_INCREASE_INTERVAL_MINUTES * 60 # 检查距上次 429 的时间 if key.last_429_at: last_429_at = cast(datetime, key.last_429_at) time_since_429 = (now - last_429_at).total_seconds() if time_since_429 < probe_interval_seconds: return False # 检查距上次探测性扩容的时间 if key.last_probe_increase_at: last_probe = cast(datetime, key.last_probe_increase_at) time_since_probe = (now - last_probe).total_seconds() if time_since_probe < probe_interval_seconds: return False # 检查请求量 if len(samples) < self.PROBE_INCREASE_MIN_REQUESTS: return False # 检查平均利用率(确保确实有使用需求) avg_util = sum(s["util"] for s in samples) / len(samples) if avg_util < 0.3: # 至少 30% 利用率 return False return True def _is_in_cooldown(self, key: ProviderAPIKey) -> bool: """ 检查是否在 429 错误后的冷却期内 Args: key: API Key对象 Returns: True 如果在冷却期内,否则 False """ if key.last_429_at is None: return False last_429_at = cast(datetime, key.last_429_at) time_since_429 = (datetime.now(timezone.utc) - last_429_at).total_seconds() cooldown_seconds = ConcurrencyDefaults.COOLDOWN_AFTER_429_MINUTES * 60 return bool(time_since_429 < cooldown_seconds) def _decrease_limit( self, current_limit: int, current_concurrent: Optional[int] = None, ) -> int: """ 减少并发限制 策略: - 如果知道当前并发数,设置为当前并发的70% - 否则,使用乘性减少 """ if current_concurrent: # 基于当前并发数减少 new_limit = max( int(current_concurrent * self.DECREASE_MULTIPLIER), self.MIN_CONCURRENT_LIMIT ) else: # 乘性减少 new_limit = max( int(current_limit * self.DECREASE_MULTIPLIER), self.MIN_CONCURRENT_LIMIT ) return new_limit def _increase_limit(self, current_limit: int) -> int: """ 增加并发限制 策略:加性增加 (+1) """ new_limit = min(current_limit + self.INCREASE_STEP, self.MAX_CONCURRENT_LIMIT) return new_limit def _record_adjustment( self, key: ProviderAPIKey, old_limit: int, new_limit: int, reason: str, **extra_data: Any, ) -> None: """ 记录并发调整历史 Args: key: API Key对象 old_limit: 原限制 new_limit: 新限制 reason: 调整原因 **extra_data: 额外数据 """ history: List[Dict[str, Any]] = list(key.adjustment_history or []) record = { "timestamp": datetime.now(timezone.utc).isoformat(), "old_limit": old_limit, "new_limit": new_limit, "reason": reason, **extra_data, } history.append(record) # 保留最近N条记录 if len(history) > self.MAX_HISTORY_RECORDS: history = history[-self.MAX_HISTORY_RECORDS:] key.adjustment_history = history # type: ignore[assignment] def get_adjustment_stats(self, key: ProviderAPIKey) -> Dict[str, Any]: """ 获取调整统计信息 Args: key: API Key对象 Returns: 统计信息 """ history: List[Dict[str, Any]] = list(key.adjustment_history or []) samples: List[Dict[str, Any]] = list(key.utilization_samples or []) # max_concurrent=NULL 表示自适应,否则为固定限制 is_adaptive = key.max_concurrent is None current_limit = int(key.learned_max_concurrent or self.DEFAULT_INITIAL_LIMIT) effective_limit = current_limit if is_adaptive else int(key.max_concurrent) # type: ignore # 计算窗口统计 avg_utilization: Optional[float] = None high_util_ratio: Optional[float] = None if samples: avg_utilization = sum(s["util"] for s in samples) / len(samples) high_util_count = sum(1 for s in samples if s["util"] >= self.UTILIZATION_THRESHOLD) high_util_ratio = high_util_count / len(samples) last_429_at_str: Optional[str] = None if key.last_429_at: last_429_at_str = cast(datetime, key.last_429_at).isoformat() last_probe_at_str: Optional[str] = None if key.last_probe_increase_at: last_probe_at_str = cast(datetime, key.last_probe_increase_at).isoformat() return { "adaptive_mode": is_adaptive, "max_concurrent": key.max_concurrent, # NULL=自适应,数字=固定限制 "effective_limit": effective_limit, # 当前有效限制 "learned_limit": key.learned_max_concurrent, # 学习到的限制 "concurrent_429_count": int(key.concurrent_429_count or 0), "rpm_429_count": int(key.rpm_429_count or 0), "last_429_at": last_429_at_str, "last_429_type": key.last_429_type, "adjustment_count": len(history), "recent_adjustments": history[-5:] if history else [], # 滑动窗口相关 "window_sample_count": len(samples), "window_avg_utilization": round(avg_utilization, 3) if avg_utilization else None, "window_high_util_ratio": round(high_util_ratio, 3) if high_util_ratio else None, "utilization_threshold": self.UTILIZATION_THRESHOLD, "high_util_ratio_threshold": self.HIGH_UTILIZATION_RATIO, "min_samples_for_decision": self.MIN_SAMPLES_FOR_DECISION, # 探测性扩容相关 "last_probe_increase_at": last_probe_at_str, "probe_increase_interval_minutes": self.PROBE_INCREASE_INTERVAL_MINUTES, } def reset_learning(self, db: Session, key: ProviderAPIKey) -> None: """ 重置学习状态(管理员功能) Args: db: 数据库会话 key: API Key对象 """ logger.info(f"[RESET] 重置学习状态: Key {key.id[:8]}...") key.learned_max_concurrent = None # type: ignore[assignment] key.concurrent_429_count = 0 # type: ignore[assignment] key.rpm_429_count = 0 # type: ignore[assignment] key.last_429_at = None # type: ignore[assignment] key.last_429_type = None # type: ignore[assignment] key.last_concurrent_peak = None # type: ignore[assignment] key.adjustment_history = [] # type: ignore[assignment] key.utilization_samples = [] # type: ignore[assignment] key.last_probe_increase_at = None # type: ignore[assignment] db.flush() get_batch_committer().mark_dirty(db) # 全局单例 _adaptive_manager: Optional[AdaptiveConcurrencyManager] = None def get_adaptive_manager() -> AdaptiveConcurrencyManager: """获取全局自适应管理器单例""" global _adaptive_manager if _adaptive_manager is None: _adaptive_manager = AdaptiveConcurrencyManager() return _adaptive_manager