1 Commits

Author SHA1 Message Date
fawney19
03ad16ea8a fix: 修复迁移脚本在全新安装时报错及改进统计回填逻辑
迁移脚本修复:
- 移除 AUTOCOMMIT 模式,改为在同一事务中创建索引
- 分别检查每个索引是否存在,只创建缺失的索引
- 修复全新安装时 AUTOCOMMIT 连接看不到未提交表的问题 (#46)

统计回填改进:
- 分别检查 StatsDaily 和 StatsDailyModel 的缺失日期
- 只回填实际缺失的数据而非连续区间
- 添加失败统计计数和 rollback 错误日志
2025-12-24 21:50:05 +08:00
2 changed files with 123 additions and 103 deletions

View File

@@ -18,49 +18,35 @@ depends_on = None
def upgrade() -> None: def upgrade() -> None:
"""为 usage 表添加复合索引以优化常见查询 """为 usage 表添加复合索引以优化常见查询
使用 CONCURRENTLY 创建索引以避免锁表, 注意:这些索引已经在 baseline 迁移中创建。
但需要在 AUTOCOMMIT 模式下执行(不能在事务内) 此迁移仅用于从旧版本升级的场景,新安装会跳过。
注意如果是从全新数据库执行baseline 刚创建表),
由于 AUTOCOMMIT 连接看不到事务中未提交的表,会跳过索引创建。
这种情况下索引会在下次迁移或手动创建。
""" """
conn = op.get_bind() conn = op.get_bind()
engine = conn.engine
# 使用新连接并设置 AUTOCOMMIT 模式以支持 CREATE INDEX CONCURRENTLY # 检查 usage 表是否存在
with engine.connect().execution_options(isolation_level="AUTOCOMMIT") as autocommit_conn: result = conn.execute(text(
# 检查 usage 表是否存在(在 AUTOCOMMIT 连接中可见) "SELECT EXISTS (SELECT FROM information_schema.tables WHERE table_name = 'usage')"
# 如果表不存在(例如 baseline 迁移还在事务中),跳过索引创建 ))
result = autocommit_conn.execute(text( if not result.scalar():
"SELECT EXISTS (SELECT FROM information_schema.tables WHERE table_name = 'usage')" # 表不存在,跳过
return
# 定义需要创建的索引
indexes = [
("idx_usage_user_created", "ON usage (user_id, created_at)"),
("idx_usage_apikey_created", "ON usage (api_key_id, created_at)"),
("idx_usage_provider_model_created", "ON usage (provider, model, created_at)"),
]
# 分别检查并创建每个索引
for index_name, index_def in indexes:
result = conn.execute(text(
f"SELECT EXISTS (SELECT 1 FROM pg_indexes WHERE indexname = '{index_name}')"
)) ))
table_exists = result.scalar() if result.scalar():
continue # 索引已存在,跳过
if not table_exists: conn.execute(text(f"CREATE INDEX {index_name} {index_def}"))
# 表在当前连接不可见(可能 baseline 还在事务中),跳过
# 索引将通过后续迁移或手动创建
return
# 使用 IF NOT EXISTS 避免重复创建,无需单独检查索引是否存在
# 1. user_id + created_at 复合索引 (用户用量查询)
autocommit_conn.execute(text(
"CREATE INDEX CONCURRENTLY IF NOT EXISTS idx_usage_user_created "
"ON usage (user_id, created_at)"
))
# 2. api_key_id + created_at 复合索引 (API Key 用量查询)
autocommit_conn.execute(text(
"CREATE INDEX CONCURRENTLY IF NOT EXISTS idx_usage_apikey_created "
"ON usage (api_key_id, created_at)"
))
# 3. provider + model + created_at 复合索引 (模型统计查询)
autocommit_conn.execute(text(
"CREATE INDEX CONCURRENTLY IF NOT EXISTS idx_usage_provider_model_created "
"ON usage (provider, model, created_at)"
))
def downgrade() -> None: def downgrade() -> None:

View File

@@ -208,86 +208,120 @@ class CleanupScheduler:
return return
# 非首次运行,检查最近是否有缺失的日期需要回填 # 非首次运行,检查最近是否有缺失的日期需要回填
latest_stat = db.query(StatsDaily).order_by(StatsDaily.date.desc()).first() from src.models.database import StatsDailyModel
if latest_stat: yesterday_business_date = today_local.date() - timedelta(days=1)
latest_date_utc = latest_stat.date max_backfill_days: int = SystemConfigService.get_config(
if latest_date_utc.tzinfo is None: db, "max_stats_backfill_days", 30
latest_date_utc = latest_date_utc.replace(tzinfo=timezone.utc) ) or 30
else:
latest_date_utc = latest_date_utc.astimezone(timezone.utc)
# 使用业务日期计算缺失区间(避免用 UTC 年月日导致日期偏移,且对 DST 更安全) # 计算回填检查的起始日期
latest_business_date = latest_date_utc.astimezone(app_tz).date() check_start_date = yesterday_business_date - timedelta(
yesterday_business_date = today_local.date() - timedelta(days=1) days=max_backfill_days - 1
missing_start_date = latest_business_date + timedelta(days=1) )
if missing_start_date <= yesterday_business_date: # 获取 StatsDaily 和 StatsDailyModel 中已有数据的日期集合
missing_days = ( existing_daily_dates = set()
yesterday_business_date - missing_start_date existing_model_dates = set()
).days + 1
# 限制最大回填天数,防止停机很久后一次性回填太多 daily_stats = (
max_backfill_days: int = SystemConfigService.get_config( db.query(StatsDaily.date)
db, "max_stats_backfill_days", 30 .filter(StatsDaily.date >= check_start_date.isoformat())
) or 30 .all()
if missing_days > max_backfill_days: )
logger.warning( for (stat_date,) in daily_stats:
f"缺失 {missing_days} 天数据超过最大回填限制 " if stat_date.tzinfo is None:
f"{max_backfill_days} 天,只回填最近 {max_backfill_days}" stat_date = stat_date.replace(tzinfo=timezone.utc)
existing_daily_dates.add(stat_date.astimezone(app_tz).date())
model_stats = (
db.query(StatsDailyModel.date)
.filter(StatsDailyModel.date >= check_start_date.isoformat())
.distinct()
.all()
)
for (stat_date,) in model_stats:
if stat_date.tzinfo is None:
stat_date = stat_date.replace(tzinfo=timezone.utc)
existing_model_dates.add(stat_date.astimezone(app_tz).date())
# 找出需要回填的日期
all_dates = set()
current = check_start_date
while current <= yesterday_business_date:
all_dates.add(current)
current += timedelta(days=1)
# 需要回填 StatsDaily 的日期
missing_daily_dates = all_dates - existing_daily_dates
# 需要回填 StatsDailyModel 的日期
missing_model_dates = all_dates - existing_model_dates
# 合并所有需要处理的日期
dates_to_process = missing_daily_dates | missing_model_dates
if dates_to_process:
sorted_dates = sorted(dates_to_process)
logger.info(
f"检测到 {len(dates_to_process)} 天的统计数据需要回填 "
f"(StatsDaily 缺失 {len(missing_daily_dates)} 天, "
f"StatsDailyModel 缺失 {len(missing_model_dates)} 天)"
)
users = (
db.query(DBUser.id).filter(DBUser.is_active.is_(True)).all()
)
failed_dates = 0
failed_users = 0
for current_date in sorted_dates:
try:
current_date_local = datetime.combine(
current_date, datetime.min.time(), tzinfo=app_tz
) )
missing_start_date = yesterday_business_date - timedelta( # 只在缺失时才聚合对应的表
days=max_backfill_days - 1 if current_date in missing_daily_dates:
)
missing_days = max_backfill_days
logger.info(
f"检测到缺失 {missing_days} 天的统计数据 "
f"({missing_start_date} ~ {yesterday_business_date}),开始回填..."
)
current_date = missing_start_date
users = (
db.query(DBUser.id).filter(DBUser.is_active.is_(True)).all()
)
while current_date <= yesterday_business_date:
try:
current_date_local = datetime.combine(
current_date, datetime.min.time(), tzinfo=app_tz
)
StatsAggregatorService.aggregate_daily_stats( StatsAggregatorService.aggregate_daily_stats(
db, current_date_local db, current_date_local
) )
if current_date in missing_model_dates:
StatsAggregatorService.aggregate_daily_model_stats( StatsAggregatorService.aggregate_daily_model_stats(
db, current_date_local db, current_date_local
) )
for (user_id,) in users: # 用户统计在任一缺失时都回填
try: for (user_id,) in users:
StatsAggregatorService.aggregate_user_daily_stats(
db, user_id, current_date_local
)
except Exception as e:
logger.warning(
f"回填用户 {user_id} 日期 {current_date} 失败: {e}"
)
try:
db.rollback()
except Exception:
pass
except Exception as e:
logger.warning(f"回填日期 {current_date} 失败: {e}")
try: try:
db.rollback() StatsAggregatorService.aggregate_user_daily_stats(
except Exception: db, user_id, current_date_local
pass )
except Exception as e:
failed_users += 1
logger.warning(
f"回填用户 {user_id} 日期 {current_date} 失败: {e}"
)
try:
db.rollback()
except Exception as rollback_err:
logger.error(f"回滚失败: {rollback_err}")
except Exception as e:
failed_dates += 1
logger.warning(f"回填日期 {current_date} 失败: {e}")
try:
db.rollback()
except Exception as rollback_err:
logger.error(f"回滚失败: {rollback_err}")
current_date += timedelta(days=1) StatsAggregatorService.update_summary(db)
StatsAggregatorService.update_summary(db) if failed_dates > 0 or failed_users > 0:
logger.info(f"缺失数据回填完成,共 {missing_days}") logger.warning(
f"回填完成,共处理 {len(dates_to_process)} 天,"
f"失败: {failed_dates} 天, {failed_users} 个用户记录"
)
else: else:
logger.info("统计数据已是最新,无需回填") logger.info(f"缺失数据回填完成,共处理 {len(dates_to_process)}")
else:
logger.info("统计数据已是最新,无需回填")
return return
# 定时任务:聚合昨天的数据 # 定时任务:聚合昨天的数据