Merge pull request #5 from fawney19/dev

Dev
This commit is contained in:
fawney19
2025-12-11 18:17:54 +08:00
committed by GitHub
22 changed files with 2158 additions and 112 deletions

135
.github/workflows/docker-publish.yml vendored Normal file
View File

@@ -0,0 +1,135 @@
name: Build and Publish Docker Image
on:
push:
branches: [master, main]
tags: ['v*']
pull_request:
branches: [master, main]
workflow_dispatch:
inputs:
build_base:
description: 'Rebuild base image'
required: false
default: false
type: boolean
env:
REGISTRY: ghcr.io
BASE_IMAGE_NAME: ${{ github.repository }}-base
APP_IMAGE_NAME: ${{ github.repository }}
jobs:
check-base-changes:
runs-on: ubuntu-latest
outputs:
base_changed: ${{ steps.check.outputs.base_changed }}
steps:
- uses: actions/checkout@v4
with:
fetch-depth: 2
- name: Check if base image needs rebuild
id: check
run: |
if [ "${{ github.event.inputs.build_base }}" == "true" ]; then
echo "base_changed=true" >> $GITHUB_OUTPUT
exit 0
fi
# Check if base-related files changed
if git diff --name-only HEAD~1 HEAD | grep -qE '^(Dockerfile\.base|pyproject\.toml|frontend/package.*\.json)$'; then
echo "base_changed=true" >> $GITHUB_OUTPUT
else
echo "base_changed=false" >> $GITHUB_OUTPUT
fi
build-base:
needs: check-base-changes
if: needs.check-base-changes.outputs.base_changed == 'true'
runs-on: ubuntu-latest
permissions:
contents: read
packages: write
steps:
- uses: actions/checkout@v4
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3
- name: Log in to Container Registry
uses: docker/login-action@v3
with:
registry: ${{ env.REGISTRY }}
username: ${{ github.actor }}
password: ${{ secrets.GITHUB_TOKEN }}
- name: Extract metadata for base image
id: meta
uses: docker/metadata-action@v5
with:
images: ${{ env.REGISTRY }}/${{ env.BASE_IMAGE_NAME }}
tags: |
type=raw,value=latest
type=sha,prefix=
- name: Build and push base image
uses: docker/build-push-action@v5
with:
context: .
file: ./Dockerfile.base
push: ${{ github.event_name != 'pull_request' }}
tags: ${{ steps.meta.outputs.tags }}
labels: ${{ steps.meta.outputs.labels }}
cache-from: type=gha
cache-to: type=gha,mode=max
platforms: linux/amd64,linux/arm64
build-app:
needs: [check-base-changes, build-base]
if: always() && (needs.build-base.result == 'success' || needs.build-base.result == 'skipped')
runs-on: ubuntu-latest
permissions:
contents: read
packages: write
steps:
- uses: actions/checkout@v4
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3
- name: Log in to Container Registry
uses: docker/login-action@v3
with:
registry: ${{ env.REGISTRY }}
username: ${{ github.actor }}
password: ${{ secrets.GITHUB_TOKEN }}
- name: Extract metadata for app image
id: meta
uses: docker/metadata-action@v5
with:
images: ${{ env.REGISTRY }}/${{ env.APP_IMAGE_NAME }}
tags: |
type=raw,value=latest,enable={{is_default_branch}}
type=ref,event=branch
type=ref,event=pr
type=semver,pattern={{version}}
type=semver,pattern={{major}}.{{minor}}
type=sha,prefix=
- name: Update Dockerfile.app to use registry base image
run: |
sed -i "s|FROM aether-base:latest|FROM ${{ env.REGISTRY }}/${{ env.BASE_IMAGE_NAME }}:latest|g" Dockerfile.app
- name: Build and push app image
uses: docker/build-push-action@v5
with:
context: .
file: ./Dockerfile.app
push: ${{ github.event_name != 'pull_request' }}
tags: ${{ steps.meta.outputs.tags }}
labels: ${{ steps.meta.outputs.labels }}
cache-from: type=gha
cache-to: type=gha,mode=max
platforms: linux/amd64,linux/arm64

View File

@@ -46,7 +46,7 @@ Aether 是一个自托管的 AI API 网关,为团队和个人提供多租户
## 部署
### Docker Compose推荐
### Docker Compose推荐:预构建镜像
```bash
# 1. 克隆代码
@@ -58,16 +58,24 @@ cp .env.example .env
python generate_keys.py # 生成密钥, 并将生成的密钥填入 .env
# 3. 部署
./deploy.sh # 自动构建、启动、迁移
docker-compose up -d
# 4. 更新
docker-compose pull && docker-compose up -d
```
### 更新
### Docker Compose本地构建镜像
```bash
# 拉取最新代码
git pull
# 1. 克隆代码
git clone https://github.com/fawney19/Aether.git
cd aether
# 自动部署脚本
# 2. 配置环境变量
cp .env.example .env
python generate_keys.py # 生成密钥, 并将生成的密钥填入 .env
# 3. 部署 / 更新(自动构建、启动、迁移)
./deploy.sh
```
@@ -75,7 +83,7 @@ git pull
```bash
# 启动依赖
docker-compose up -d postgres redis
docker-compose -f docker-compose.build.yml up -d postgres redis
# 后端
uv sync

View File

@@ -11,9 +11,9 @@ cd "$(dirname "$0")"
# 兼容 docker-compose 和 docker compose
if command -v docker-compose &> /dev/null; then
DC="docker-compose"
DC="docker-compose -f docker-compose.build.yml"
else
DC="docker compose"
DC="docker compose -f docker-compose.build.yml"
fi
# 缓存文件

78
docker-compose.build.yml Normal file
View File

@@ -0,0 +1,78 @@
# Aether 部署配置 - 本地构建
# 使用方法:
# 首次构建 base: docker build -f Dockerfile.base -t aether-base:latest .
# 启动服务: docker-compose -f docker-compose.build.yml up -d --build
services:
postgres:
image: postgres:15
container_name: aether-postgres
environment:
POSTGRES_DB: aether
POSTGRES_USER: postgres
POSTGRES_PASSWORD: ${DB_PASSWORD}
TZ: Asia/Shanghai
volumes:
- postgres_data:/var/lib/postgresql/data
ports:
- "${DB_PORT:-5432}:5432"
healthcheck:
test: ["CMD-SHELL", "pg_isready -U postgres"]
interval: 5s
timeout: 5s
retries: 5
restart: unless-stopped
redis:
image: redis:7-alpine
container_name: aether-redis
command: redis-server --appendonly yes --requirepass ${REDIS_PASSWORD}
volumes:
- redis_data:/data
ports:
- "${REDIS_PORT:-6379}:6379"
healthcheck:
test: ["CMD", "redis-cli", "--raw", "incr", "ping"]
interval: 5s
timeout: 3s
retries: 5
restart: unless-stopped
app:
build:
context: .
dockerfile: Dockerfile.app
image: aether-app:latest
container_name: aether-app
environment:
DATABASE_URL: postgresql://postgres:${DB_PASSWORD}@postgres:5432/aether
REDIS_URL: redis://:${REDIS_PASSWORD}@redis:6379/0
PORT: 8084
JWT_SECRET_KEY: ${JWT_SECRET_KEY}
ENCRYPTION_KEY: ${ENCRYPTION_KEY}
JWT_ALGORITHM: HS256
JWT_EXPIRATION_DELTA: 86400
LOG_LEVEL: ${LOG_LEVEL:-INFO}
ADMIN_EMAIL: ${ADMIN_EMAIL}
ADMIN_USERNAME: ${ADMIN_USERNAME}
ADMIN_PASSWORD: ${ADMIN_PASSWORD}
API_KEY_PREFIX: ${API_KEY_PREFIX:-sk}
GUNICORN_WORKERS: ${GUNICORN_WORKERS:-4}
TZ: Asia/Shanghai
PYTHONIOENCODING: utf-8
LANG: C.UTF-8
LC_ALL: C.UTF-8
depends_on:
postgres:
condition: service_healthy
redis:
condition: service_healthy
ports:
- "${APP_PORT:-8084}:80"
volumes:
- ./logs:/app/logs
restart: unless-stopped
volumes:
postgres_data:
redis_data:

View File

@@ -1,5 +1,5 @@
# Aether 部署配置
# 使用 ./deploy.sh 自动部署
# Aether 部署配置 - 使用预构建镜像
# 使用方法: docker-compose up -d
services:
postgres:
@@ -37,7 +37,7 @@ services:
restart: unless-stopped
app:
image: aether-app:latest
image: ghcr.io/fawney19/aether:latest
container_name: aether-app
environment:
DATABASE_URL: postgresql://postgres:${DB_PASSWORD}@postgres:5432/aether
@@ -65,11 +65,9 @@ services:
ports:
- "${APP_PORT:-8084}:80"
volumes:
# 挂载日志目录到主机,便于调试和持久化
- ./logs:/app/logs
restart: unless-stopped
volumes:
postgres_data:
redis_data:
redis_data:

View File

@@ -14,8 +14,10 @@
"@vueuse/core": "^13.9.0",
"axios": "^1.12.1",
"chart.js": "^4.5.0",
"chartjs-adapter-date-fns": "^3.0.0",
"class-variance-authority": "^0.7.1",
"clsx": "^2.1.1",
"date-fns": "^4.1.0",
"dompurify": "^3.3.0",
"highlight.js": "^11.11.1",
"lucide-vue-next": "^0.544.0",
@@ -2723,6 +2725,16 @@
"pnpm": ">=8"
}
},
"node_modules/chartjs-adapter-date-fns": {
"version": "3.0.0",
"resolved": "https://registry.npmjs.org/chartjs-adapter-date-fns/-/chartjs-adapter-date-fns-3.0.0.tgz",
"integrity": "sha512-Rs3iEB3Q5pJ973J93OBTpnP7qoGwvq3nUnoMdtxO+9aoJof7UFcRbWcIDteXuYd1fgAvct/32T9qaLyLuZVwCg==",
"license": "MIT",
"peerDependencies": {
"chart.js": ">=2.8.0",
"date-fns": ">=2.0.0"
}
},
"node_modules/chokidar": {
"version": "3.6.0",
"resolved": "https://registry.npmjs.org/chokidar/-/chokidar-3.6.0.tgz",
@@ -2923,6 +2935,16 @@
"node": ">=20"
}
},
"node_modules/date-fns": {
"version": "4.1.0",
"resolved": "https://registry.npmjs.org/date-fns/-/date-fns-4.1.0.tgz",
"integrity": "sha512-Ukq0owbQXxa/U3EGtsdVBkR1w7KOQ5gIBqdH2hkvknzZPYvBxb/aa6E8L7tmjFtkwZBu3UXBbjIgPo/Ez4xaNg==",
"license": "MIT",
"funding": {
"type": "github",
"url": "https://github.com/sponsors/kossnocorp"
}
},
"node_modules/de-indent": {
"version": "1.0.2",
"resolved": "https://registry.npmjs.org/de-indent/-/de-indent-1.0.2.tgz",

View File

@@ -21,8 +21,10 @@
"@vueuse/core": "^13.9.0",
"axios": "^1.12.1",
"chart.js": "^4.5.0",
"chartjs-adapter-date-fns": "^3.0.0",
"class-variance-authority": "^0.7.1",
"clsx": "^2.1.1",
"date-fns": "^4.1.0",
"dompurify": "^3.3.0",
"highlight.js": "^11.11.1",
"lucide-vue-next": "^0.544.0",

View File

@@ -156,3 +156,116 @@ export const {
clearProviderCache,
listAffinities
} = cacheApi
// ==================== 缓存亲和性分析 API ====================
export interface TTLAnalysisUser {
group_id: string
username: string | null
email: string | null
request_count: number
interval_distribution: {
within_5min: number
within_15min: number
within_30min: number
within_60min: number
over_60min: number
}
interval_percentages: {
within_5min: number
within_15min: number
within_30min: number
within_60min: number
over_60min: number
}
percentiles: {
p50: number | null
p75: number | null
p90: number | null
}
avg_interval_minutes: number | null
min_interval_minutes: number | null
max_interval_minutes: number | null
recommended_ttl_minutes: number
recommendation_reason: string
}
export interface TTLAnalysisResponse {
analysis_period_hours: number
total_users_analyzed: number
ttl_distribution: {
'5min': number
'15min': number
'30min': number
'60min': number
}
users: TTLAnalysisUser[]
}
export interface CacheHitAnalysisResponse {
analysis_period_hours: number
total_requests: number
requests_with_cache_hit: number
request_cache_hit_rate: number
total_input_tokens: number
total_cache_read_tokens: number
total_cache_creation_tokens: number
token_cache_hit_rate: number
total_cache_read_cost_usd: number
total_cache_creation_cost_usd: number
estimated_savings_usd: number
}
export interface IntervalTimelinePoint {
x: string // ISO 时间字符串
y: number // 间隔分钟数
user_id?: string // 用户 ID仅 include_user_info=true 时存在)
}
export interface IntervalTimelineResponse {
analysis_period_hours: number
total_points: number
points: IntervalTimelinePoint[]
users?: Record<string, string> // user_id -> username 映射(仅 include_user_info=true 时存在)
}
export const cacheAnalysisApi = {
/**
* 分析缓存亲和性 TTL 推荐
*/
async analyzeTTL(params?: {
user_id?: string
api_key_id?: string
hours?: number
}): Promise<TTLAnalysisResponse> {
const response = await api.get('/api/admin/usage/cache-affinity/ttl-analysis', { params })
return response.data
},
/**
* 分析缓存命中情况
*/
async analyzeHit(params?: {
user_id?: string
api_key_id?: string
hours?: number
}): Promise<CacheHitAnalysisResponse> {
const response = await api.get('/api/admin/usage/cache-affinity/hit-analysis', { params })
return response.data
},
/**
* 获取请求间隔时间线数据
*
* @param params.include_user_info 是否包含用户信息(用于管理员多用户视图)
*/
async getIntervalTimeline(params?: {
hours?: number
limit?: number
user_id?: string
include_user_info?: boolean
}): Promise<IntervalTimelineResponse> {
const response = await api.get('/api/admin/usage/cache-affinity/interval-timeline', { params })
return response.data
}
}

View File

@@ -253,5 +253,18 @@ export const meApi = {
}> {
const response = await apiClient.put('/api/users/me/model-capabilities', data)
return response.data
},
// 获取请求间隔时间线(用于散点图)
async getIntervalTimeline(params?: {
hours?: number
limit?: number
}): Promise<{
analysis_period_hours: number
total_points: number
points: Array<{ x: string; y: number }>
}> {
const response = await apiClient.get('/api/users/me/usage/interval-timeline', { params })
return response.data
}
}

View File

@@ -0,0 +1,372 @@
<template>
<div class="w-full h-full relative">
<canvas ref="chartRef"></canvas>
<div
v-if="crosshairStats"
class="absolute top-2 right-2 bg-gray-800/90 text-gray-100 px-3 py-2 rounded-lg text-sm shadow-lg border border-gray-600"
>
<div class="font-medium text-yellow-400">Y = {{ crosshairStats.yValue.toFixed(1) }} 分钟</div>
<div class="mt-1">
<span class="text-green-400">{{ crosshairStats.belowCount }}</span> / {{ crosshairStats.totalCount }} 点在横线以下
<span class="ml-2 text-blue-400">({{ crosshairStats.belowPercent.toFixed(1) }}%)</span>
</div>
</div>
</div>
</template>
<script setup lang="ts">
import { ref, onMounted, onUnmounted, watch, nextTick, computed } from 'vue'
import {
Chart as ChartJS,
LinearScale,
PointElement,
ScatterController,
TimeScale,
Title,
Tooltip,
Legend,
type ChartData,
type ChartOptions,
type Plugin,
type Scale
} from 'chart.js'
import 'chartjs-adapter-date-fns'
ChartJS.register(
LinearScale,
PointElement,
ScatterController,
TimeScale,
Title,
Tooltip,
Legend
)
interface Props {
data: ChartData<'scatter'>
options?: ChartOptions<'scatter'>
height?: number
}
interface CrosshairStats {
yValue: number
belowCount: number
totalCount: number
belowPercent: number
}
const props = withDefaults(defineProps<Props>(), {
height: 300
})
const chartRef = ref<HTMLCanvasElement>()
let chart: ChartJS<'scatter'> | null = null
const crosshairY = ref<number | null>(null)
const crosshairStats = computed<CrosshairStats | null>(() => {
if (crosshairY.value === null || !props.data.datasets) return null
let totalCount = 0
let belowCount = 0
for (const dataset of props.data.datasets) {
if (!dataset.data) continue
for (const point of dataset.data) {
const p = point as { x: string; y: number }
if (typeof p.y === 'number') {
totalCount++
if (p.y <= crosshairY.value) {
belowCount++
}
}
}
}
if (totalCount === 0) return null
return {
yValue: crosshairY.value,
belowCount,
totalCount,
belowPercent: (belowCount / totalCount) * 100
}
})
const crosshairPlugin: Plugin<'scatter'> = {
id: 'crosshairLine',
afterDraw: (chartInstance) => {
if (crosshairY.value === null) return
const { ctx, chartArea, scales } = chartInstance
const yScale = scales.y
if (!yScale || !chartArea) return
const yPixel = yScale.getPixelForValue(crosshairY.value)
if (yPixel < chartArea.top || yPixel > chartArea.bottom) return
ctx.save()
ctx.beginPath()
ctx.moveTo(chartArea.left, yPixel)
ctx.lineTo(chartArea.right, yPixel)
ctx.strokeStyle = 'rgba(250, 204, 21, 0.8)'
ctx.lineWidth = 2
ctx.setLineDash([6, 4])
ctx.stroke()
ctx.restore()
}
}
// 自定义非线性 Y 轴转换函数
// 0-10 分钟占据 70% 的空间10-120 分钟占据 30% 的空间
const BREAKPOINT = 10 // 分界点10 分钟
const LOWER_RATIO = 0.7 // 0-10 分钟占 70% 空间
// 将实际值转换为显示值(用于绘图)
function toDisplayValue(realValue: number): number {
if (realValue <= BREAKPOINT) {
// 0-10 分钟线性映射到 0-70
return realValue * (LOWER_RATIO * 100 / BREAKPOINT)
} else {
// 10-120 分钟映射到 70-100
const upperRange = 120 - BREAKPOINT
const displayUpperRange = (1 - LOWER_RATIO) * 100
return LOWER_RATIO * 100 + ((realValue - BREAKPOINT) / upperRange) * displayUpperRange
}
}
// 将显示值转换回实际值(用于读取鼠标位置)
function toRealValue(displayValue: number): number {
const breakpointDisplay = LOWER_RATIO * 100
if (displayValue <= breakpointDisplay) {
return displayValue / (LOWER_RATIO * 100 / BREAKPOINT)
} else {
const upperRange = 120 - BREAKPOINT
const displayUpperRange = (1 - LOWER_RATIO) * 100
return BREAKPOINT + ((displayValue - breakpointDisplay) / displayUpperRange) * upperRange
}
}
// 转换数据点的 Y 值
function transformData(data: ChartData<'scatter'>): ChartData<'scatter'> {
return {
...data,
datasets: data.datasets.map(dataset => ({
...dataset,
data: (dataset.data as Array<{ x: string; y: number }>).map(point => ({
...point,
y: toDisplayValue(point.y),
_originalY: point.y // 保存原始值用于 tooltip
}))
}))
}
}
const defaultOptions: ChartOptions<'scatter'> = {
responsive: true,
maintainAspectRatio: false,
interaction: {
mode: 'nearest',
intersect: true
},
scales: {
x: {
type: 'time',
time: {
unit: 'hour',
displayFormats: {
hour: 'MM-dd HH:mm'
}
},
grid: {
color: 'rgba(156, 163, 175, 0.1)'
},
ticks: {
color: 'rgb(107, 114, 128)',
maxRotation: 45
},
title: {
display: true,
text: '时间',
color: 'rgb(107, 114, 128)'
}
},
y: {
type: 'linear',
min: 0,
max: 100, // 显示值范围 0-100
grid: {
color: 'rgba(156, 163, 175, 0.1)'
},
ticks: {
color: 'rgb(107, 114, 128)',
// 自定义刻度值:在实际值 0, 2, 5, 10, 30, 60, 120 处显示
callback: function(this: Scale, tickValue: string | number) {
const displayVal = Number(tickValue)
const realVal = toRealValue(displayVal)
// 只在特定的显示位置显示刻度
const targetTicks = [0, 2, 5, 10, 30, 60, 120]
for (const target of targetTicks) {
const targetDisplay = toDisplayValue(target)
if (Math.abs(displayVal - targetDisplay) < 1) {
return `${target}`
}
}
return ''
},
stepSize: 5, // 显示值的步长
autoSkip: false
},
title: {
display: true,
text: '间隔 (分钟)',
color: 'rgb(107, 114, 128)'
},
afterBuildTicks: function(scale: Scale) {
// 在特定实际值处设置刻度
const targetTicks = [0, 2, 5, 10, 30, 60, 120]
scale.ticks = targetTicks.map(val => ({
value: toDisplayValue(val),
label: `${val}`
}))
}
}
},
plugins: {
legend: {
display: false
},
tooltip: {
backgroundColor: 'rgb(31, 41, 55)',
titleColor: 'rgb(243, 244, 246)',
bodyColor: 'rgb(243, 244, 246)',
borderColor: 'rgb(75, 85, 99)',
borderWidth: 1,
callbacks: {
label: (context) => {
const point = context.raw as { x: string; y: number; _originalY?: number }
const realY = point._originalY ?? toRealValue(point.y)
return `间隔: ${realY.toFixed(1)} 分钟`
}
}
}
},
onHover: (event, _elements, chartInstance) => {
const canvas = chartInstance.canvas
if (!canvas) return
const rect = canvas.getBoundingClientRect()
const mouseY = (event.native as MouseEvent)?.clientY
if (mouseY === undefined) {
crosshairY.value = null
return
}
const { chartArea, scales } = chartInstance
const yScale = scales.y
if (!chartArea || !yScale) return
const relativeY = mouseY - rect.top
if (relativeY < chartArea.top || relativeY > chartArea.bottom) {
crosshairY.value = null
} else {
const displayValue = yScale.getValueForPixel(relativeY)
// 转换回实际值
crosshairY.value = displayValue !== undefined ? toRealValue(displayValue) : null
}
chartInstance.draw()
}
}
// 修改 crosshairPlugin 使用显示值
const crosshairPluginWithTransform: Plugin<'scatter'> = {
id: 'crosshairLine',
afterDraw: (chartInstance) => {
if (crosshairY.value === null) return
const { ctx, chartArea, scales } = chartInstance
const yScale = scales.y
if (!yScale || !chartArea) return
// 将实际值转换为显示值再获取像素位置
const displayValue = toDisplayValue(crosshairY.value)
const yPixel = yScale.getPixelForValue(displayValue)
if (yPixel < chartArea.top || yPixel > chartArea.bottom) return
ctx.save()
ctx.beginPath()
ctx.moveTo(chartArea.left, yPixel)
ctx.lineTo(chartArea.right, yPixel)
ctx.strokeStyle = 'rgba(250, 204, 21, 0.8)'
ctx.lineWidth = 2
ctx.setLineDash([6, 4])
ctx.stroke()
ctx.restore()
}
}
function handleMouseLeave() {
crosshairY.value = null
if (chart) {
chart.draw()
}
}
function createChart() {
if (!chartRef.value) return
// 转换数据
const transformedData = transformData(props.data)
chart = new ChartJS(chartRef.value, {
type: 'scatter',
data: transformedData,
options: {
...defaultOptions,
...props.options
},
plugins: [crosshairPluginWithTransform]
})
chartRef.value.addEventListener('mouseleave', handleMouseLeave)
}
function updateChart() {
if (chart) {
chart.data = transformData(props.data)
chart.update('none')
}
}
onMounted(async () => {
await nextTick()
createChart()
})
onUnmounted(() => {
if (chartRef.value) {
chartRef.value.removeEventListener('mouseleave', handleMouseLeave)
}
if (chart) {
chart.destroy()
chart = null
}
})
watch(() => props.data, updateChart, { deep: true })
watch(() => props.options, () => {
if (chart) {
chart.options = {
...defaultOptions,
...props.options
}
chart.update()
}
}, { deep: true })
</script>

View File

@@ -188,7 +188,7 @@ const monthMarkers = computed(() => {
if (month === lastMonth) {
return
}
markers[index] = String(month + 1)
markers[index] = `${month + 1}`
lastMonth = month
})

View File

@@ -0,0 +1,208 @@
/**
* TTL 分析 composable
* 封装缓存亲和性 TTL 分析相关的状态和逻辑
*/
import { ref, computed, watch } from 'vue'
import { useToast } from '@/composables/useToast'
import {
cacheAnalysisApi,
type TTLAnalysisResponse,
type CacheHitAnalysisResponse,
type IntervalTimelineResponse
} from '@/api/cache'
import type { ChartData } from 'chart.js'
// 时间范围选项
export const ANALYSIS_HOURS_OPTIONS = [
{ value: '12', label: '12 小时' },
{ value: '24', label: '24 小时' },
{ value: '72', label: '3 天' },
{ value: '168', label: '7 天' },
{ value: '336', label: '14 天' },
{ value: '720', label: '30 天' }
] as const
// 间隔颜色配置
export const INTERVAL_COLORS = {
short: 'rgba(34, 197, 94, 0.6)', // green: 0-5 分钟
medium: 'rgba(59, 130, 246, 0.6)', // blue: 5-15 分钟
normal: 'rgba(168, 85, 247, 0.6)', // purple: 15-30 分钟
long: 'rgba(249, 115, 22, 0.6)', // orange: 30-60 分钟
veryLong: 'rgba(239, 68, 68, 0.6)' // red: >60 分钟
} as const
/**
* 根据间隔时间获取对应的颜色
*/
export function getIntervalColor(interval: number): string {
if (interval <= 5) return INTERVAL_COLORS.short
if (interval <= 15) return INTERVAL_COLORS.medium
if (interval <= 30) return INTERVAL_COLORS.normal
if (interval <= 60) return INTERVAL_COLORS.long
return INTERVAL_COLORS.veryLong
}
/**
* 获取 TTL 推荐的 Badge 样式
*/
export function getTTLBadgeVariant(ttl: number): 'default' | 'secondary' | 'outline' | 'destructive' {
if (ttl <= 5) return 'default'
if (ttl <= 15) return 'secondary'
if (ttl <= 30) return 'outline'
return 'destructive'
}
/**
* 获取使用频率标签
*/
export function getFrequencyLabel(ttl: number): string {
if (ttl <= 5) return '高频'
if (ttl <= 15) return '中高频'
if (ttl <= 30) return '中频'
return '低频'
}
/**
* 获取使用频率样式类名
*/
export function getFrequencyClass(ttl: number): string {
if (ttl <= 5) return 'text-success font-medium'
if (ttl <= 15) return 'text-blue-500 font-medium'
if (ttl <= 30) return 'text-muted-foreground'
return 'text-destructive'
}
export function useTTLAnalysis() {
const { error: showError, info: showInfo } = useToast()
// 状态
const ttlAnalysis = ref<TTLAnalysisResponse | null>(null)
const hitAnalysis = ref<CacheHitAnalysisResponse | null>(null)
const ttlAnalysisLoading = ref(false)
const hitAnalysisLoading = ref(false)
const analysisHours = ref('24')
// 用户散点图展开状态
const expandedUserId = ref<string | null>(null)
const userTimelineData = ref<IntervalTimelineResponse | null>(null)
const userTimelineLoading = ref(false)
// 计算属性:是否正在加载
const isLoading = computed(() => ttlAnalysisLoading.value || hitAnalysisLoading.value)
// 获取 TTL 分析数据
async function fetchTTLAnalysis() {
ttlAnalysisLoading.value = true
try {
const hours = parseInt(analysisHours.value)
const result = await cacheAnalysisApi.analyzeTTL({ hours })
ttlAnalysis.value = result
if (result.total_users_analyzed === 0) {
const periodText = hours >= 24 ? `${hours / 24}` : `${hours} 小时`
showInfo(`未找到符合条件的数据(最近 ${periodText}`)
}
} catch (error) {
showError('获取 TTL 分析失败')
console.error(error)
} finally {
ttlAnalysisLoading.value = false
}
}
// 获取缓存命中分析数据
async function fetchHitAnalysis() {
hitAnalysisLoading.value = true
try {
hitAnalysis.value = await cacheAnalysisApi.analyzeHit({
hours: parseInt(analysisHours.value)
})
} catch (error) {
showError('获取缓存命中分析失败')
console.error(error)
} finally {
hitAnalysisLoading.value = false
}
}
// 获取指定用户的时间线数据
async function fetchUserTimeline(userId: string) {
userTimelineLoading.value = true
try {
userTimelineData.value = await cacheAnalysisApi.getIntervalTimeline({
hours: parseInt(analysisHours.value),
limit: 2000,
user_id: userId
})
} catch (error) {
showError('获取用户时间线数据失败')
console.error(error)
} finally {
userTimelineLoading.value = false
}
}
// 切换用户行展开状态
async function toggleUserExpand(userId: string) {
if (expandedUserId.value === userId) {
expandedUserId.value = null
userTimelineData.value = null
} else {
expandedUserId.value = userId
await fetchUserTimeline(userId)
}
}
// 刷新所有分析数据
async function refreshAnalysis() {
expandedUserId.value = null
userTimelineData.value = null
await Promise.all([fetchTTLAnalysis(), fetchHitAnalysis()])
}
// 用户时间线散点图数据
const userTimelineChartData = computed<ChartData<'scatter'>>(() => {
if (!userTimelineData.value || userTimelineData.value.points.length === 0) {
return { datasets: [] }
}
const points = userTimelineData.value.points
return {
datasets: [{
label: '请求间隔',
data: points.map(p => ({ x: p.x, y: p.y })),
backgroundColor: points.map(p => getIntervalColor(p.y)),
borderColor: points.map(p => getIntervalColor(p.y).replace('0.6', '1')),
pointRadius: 3,
pointHoverRadius: 5
}]
}
})
// 监听时间范围变化
watch(analysisHours, () => {
refreshAnalysis()
})
return {
// 状态
ttlAnalysis,
hitAnalysis,
ttlAnalysisLoading,
hitAnalysisLoading,
analysisHours,
expandedUserId,
userTimelineData,
userTimelineLoading,
isLoading,
userTimelineChartData,
// 方法
fetchTTLAnalysis,
fetchHitAnalysis,
fetchUserTimeline,
toggleUserExpand,
refreshAnalysis
}
}

View File

@@ -0,0 +1,205 @@
<template>
<Card class="p-4">
<div class="flex items-center justify-between mb-3">
<p class="text-sm font-semibold">{{ title }}</p>
<div v-if="hasMultipleUsers && userLegend.length > 0" class="flex items-center gap-2 flex-wrap justify-end text-[11px]">
<div
v-for="user in userLegend"
:key="user.id"
class="flex items-center gap-1"
>
<div
class="w-2.5 h-2.5 rounded-full"
:style="{ backgroundColor: user.color }"
/>
<span class="text-muted-foreground">{{ user.name }}</span>
</div>
</div>
</div>
<div v-if="loading" class="h-[160px] flex items-center justify-center">
<div class="text-sm text-muted-foreground">Loading...</div>
</div>
<div v-else-if="hasData" class="h-[160px]">
<ScatterChart :data="chartData" :options="chartOptions" />
</div>
<div v-else class="h-[160px] flex items-center justify-center text-sm text-muted-foreground">
暂无请求间隔数据
</div>
</Card>
</template>
<script setup lang="ts">
import { computed, ref, onMounted, watch } from 'vue'
import Card from '@/components/ui/card.vue'
import ScatterChart from '@/components/charts/ScatterChart.vue'
import { cacheAnalysisApi, type IntervalTimelineResponse } from '@/api/cache'
import { meApi } from '@/api/me'
import type { ChartData, ChartOptions } from 'chart.js'
const props = withDefaults(defineProps<{
title: string
isAdmin: boolean
hours?: number
}>(), {
hours: 168 // 默认7天
})
const loading = ref(false)
const timelineData = ref<IntervalTimelineResponse | null>(null)
const primaryColor = ref('201, 100, 66') // 默认主题色
// 获取主题色
function getPrimaryColor(): string {
if (typeof window === 'undefined') return '201, 100, 66'
// CSS 变量定义在 body 上,不是 documentElement
const body = document.body
const style = getComputedStyle(body)
const rgb = style.getPropertyValue('--color-primary-rgb').trim()
return rgb || '201, 100, 66'
}
onMounted(() => {
primaryColor.value = getPrimaryColor()
loadData()
})
// 预定义的颜色列表(用于区分不同用户)
const USER_COLORS = [
'rgba(59, 130, 246, 0.7)', // blue
'rgba(236, 72, 153, 0.7)', // pink
'rgba(34, 197, 94, 0.7)', // green
'rgba(249, 115, 22, 0.7)', // orange
'rgba(168, 85, 247, 0.7)', // purple
'rgba(234, 179, 8, 0.7)', // yellow
'rgba(14, 165, 233, 0.7)', // sky
'rgba(239, 68, 68, 0.7)', // red
'rgba(20, 184, 166, 0.7)', // teal
'rgba(99, 102, 241, 0.7)', // indigo
]
const hasData = computed(() =>
timelineData.value && timelineData.value.points && timelineData.value.points.length > 0
)
const hasMultipleUsers = computed(() =>
props.isAdmin && timelineData.value?.users && Object.keys(timelineData.value.users).length > 1
)
// 用户图例
const userLegend = computed(() => {
if (!props.isAdmin || !timelineData.value?.users) return []
const users = Object.entries(timelineData.value.users)
return users.map(([userId, username], index) => ({
id: userId,
name: username || userId.slice(0, 8),
color: USER_COLORS[index % USER_COLORS.length]
}))
})
// 构建图表数据
const chartData = computed<ChartData<'scatter'>>(() => {
if (!timelineData.value?.points) {
return { datasets: [] }
}
const points = timelineData.value.points
// 如果是管理员且有多个用户,按用户分组
if (props.isAdmin && timelineData.value.users && Object.keys(timelineData.value.users).length > 1) {
const userIds = Object.keys(timelineData.value.users)
const userColorMap: Record<string, string> = {}
userIds.forEach((userId, index) => {
userColorMap[userId] = USER_COLORS[index % USER_COLORS.length]
})
// 按用户分组数据
const groupedData: Record<string, Array<{ x: string; y: number }>> = {}
for (const point of points) {
const userId = point.user_id || 'unknown'
if (!groupedData[userId]) {
groupedData[userId] = []
}
groupedData[userId].push({ x: point.x, y: point.y })
}
// 创建每个用户的 dataset
const datasets = Object.entries(groupedData).map(([userId, data]) => ({
label: timelineData.value?.users?.[userId] || userId.slice(0, 8),
data,
backgroundColor: userColorMap[userId] || 'rgba(59, 130, 246, 0.6)',
borderColor: userColorMap[userId] || 'rgba(59, 130, 246, 0.8)',
pointRadius: 3,
pointHoverRadius: 5,
}))
return { datasets }
}
// 单用户或用户视图:使用主题色
return {
datasets: [{
label: '请求间隔',
data: points.map(p => ({ x: p.x, y: p.y })),
backgroundColor: `rgba(${primaryColor.value}, 0.6)`,
borderColor: `rgba(${primaryColor.value}, 0.8)`,
pointRadius: 3,
pointHoverRadius: 5,
}]
}
})
const chartOptions = computed<ChartOptions<'scatter'>>(() => ({
plugins: {
legend: {
display: false // 使用自定义图例
},
tooltip: {
callbacks: {
label: (context) => {
const point = context.raw as { x: string; y: number; _originalY?: number }
const realY = point._originalY ?? point.y
const datasetLabel = context.dataset.label || ''
if (props.isAdmin && hasMultipleUsers.value) {
return `${datasetLabel}: ${realY.toFixed(1)} 分钟`
}
return `间隔: ${realY.toFixed(1)} 分钟`
}
}
}
}
}))
async function loadData() {
loading.value = true
try {
if (props.isAdmin) {
// 管理员:获取所有用户数据
timelineData.value = await cacheAnalysisApi.getIntervalTimeline({
hours: props.hours,
include_user_info: true,
limit: 2000,
})
} else {
// 普通用户:获取自己的数据
timelineData.value = await meApi.getIntervalTimeline({
hours: props.hours,
limit: 1000,
})
}
} catch (error) {
console.error('加载请求间隔时间线失败:', error)
timelineData.value = null
} finally {
loading.value = false
}
}
watch(() => props.hours, () => {
loadData()
})
watch(() => props.isAdmin, () => {
loadData()
})
</script>

View File

@@ -5,3 +5,4 @@ export { default as UsageRecordsTable } from './UsageRecordsTable.vue'
export { default as ActivityHeatmapCard } from './ActivityHeatmapCard.vue'
export { default as RequestDetailDrawer } from './RequestDetailDrawer.vue'
export { default as HorizontalRequestTimeline } from './HorizontalRequestTimeline.vue'
export { default as IntervalTimelineCard } from './IntervalTimelineCard.vue'

View File

@@ -125,4 +125,21 @@ export function formatBillingType(type: string | undefined | null): string {
'free_tier': '免费套餐'
}
return typeMap[type || ''] || type || '按量付费'
}
// Format cost with 4 decimal places (for cache analysis)
export function formatCost(cost: number | null | undefined): string {
if (cost === null || cost === undefined) return '-'
return `$${cost.toFixed(4)}`
}
// Format remaining time from unix timestamp
export function formatRemainingTime(expireAt: number | undefined, currentTime: number): string {
if (!expireAt) return '未知'
const remaining = expireAt - currentTime
if (remaining <= 0) return '已过期'
const minutes = Math.floor(remaining / 60)
const seconds = Math.floor(remaining % 60)
return `${minutes}${seconds}`
}

View File

@@ -12,10 +12,27 @@ import TableRow from '@/components/ui/table-row.vue'
import Input from '@/components/ui/input.vue'
import Pagination from '@/components/ui/pagination.vue'
import RefreshButton from '@/components/ui/refresh-button.vue'
import { Trash2, Eraser, Search, X } from 'lucide-vue-next'
import Select from '@/components/ui/select.vue'
import SelectTrigger from '@/components/ui/select-trigger.vue'
import SelectContent from '@/components/ui/select-content.vue'
import SelectItem from '@/components/ui/select-item.vue'
import SelectValue from '@/components/ui/select-value.vue'
import ScatterChart from '@/components/charts/ScatterChart.vue'
import { Trash2, Eraser, Search, X, BarChart3, ChevronDown, ChevronRight } from 'lucide-vue-next'
import { useToast } from '@/composables/useToast'
import { useConfirm } from '@/composables/useConfirm'
import { cacheApi, type CacheStats, type CacheConfig, type UserAffinity } from '@/api/cache'
import type { TTLAnalysisUser } from '@/api/cache'
import { formatNumber, formatTokens, formatCost, formatRemainingTime } from '@/utils/format'
import {
useTTLAnalysis,
ANALYSIS_HOURS_OPTIONS,
getTTLBadgeVariant,
getFrequencyLabel,
getFrequencyClass
} from '@/composables/useTTLAnalysis'
// ==================== 缓存统计与亲和性列表 ====================
const stats = ref<CacheStats | null>(null)
const config = ref<CacheConfig | null>(null)
@@ -27,28 +44,40 @@ const matchedUserId = ref<string | null>(null)
const clearingRowAffinityKey = ref<string | null>(null)
const currentPage = ref(1)
const pageSize = ref(20)
const currentTime = ref(Math.floor(Date.now() / 1000))
const { success: showSuccess, error: showError, info: showInfo } = useToast()
const { confirm: showConfirm } = useConfirm()
const currentTime = ref(Math.floor(Date.now() / 1000))
let searchDebounceTimer: ReturnType<typeof setTimeout> | null = null
let skipNextKeywordWatch = false
let countdownTimer: ReturnType<typeof setInterval> | null = null
// 计算分页后的数据
// ==================== TTL 分析 (使用 composable) ====================
const {
ttlAnalysis,
hitAnalysis,
ttlAnalysisLoading,
analysisHours,
expandedUserId,
userTimelineData,
userTimelineLoading,
userTimelineChartData,
toggleUserExpand,
refreshAnalysis
} = useTTLAnalysis()
// ==================== 计算属性 ====================
const paginatedAffinityList = computed(() => {
const start = (currentPage.value - 1) * pageSize.value
const end = start + pageSize.value
return affinityList.value.slice(start, end)
})
// 页码变化处理
function handlePageChange() {
// 分页变化时滚动到顶部
window.scrollTo({ top: 0, behavior: 'smooth' })
}
// ==================== 缓存统计方法 ====================
// 获取缓存统计
async function fetchCacheStats() {
loading.value = true
try {
@@ -61,7 +90,6 @@ async function fetchCacheStats() {
}
}
// 获取缓存配置
async function fetchCacheConfig() {
try {
config.value = await cacheApi.getConfig()
@@ -70,7 +98,6 @@ async function fetchCacheConfig() {
}
}
// 获取缓存亲和性列表
async function fetchAffinityList(keyword?: string) {
listLoading.value = true
try {
@@ -107,17 +134,14 @@ async function resetAffinitySearch() {
await fetchAffinityList()
}
// 清除缓存(按 affinity_key 或用户标识符)
async function clearUserCache(identifier: string, displayName?: string) {
const target = identifier?.trim()
if (!target) {
showError('无法识别标识符')
return
}
const label = displayName || target
const confirmed = await showConfirm({
title: '确认清除',
message: `确定要清除 ${label} 的缓存吗?`,
@@ -125,12 +149,9 @@ async function clearUserCache(identifier: string, displayName?: string) {
variant: 'destructive'
})
if (!confirmed) {
return
}
if (!confirmed) return
clearingRowAffinityKey.value = target
try {
await cacheApi.clearUserCache(target)
showSuccess('清除成功')
@@ -144,7 +165,6 @@ async function clearUserCache(identifier: string, displayName?: string) {
}
}
// 清除所有缓存
async function clearAllCache() {
const firstConfirm = await showConfirm({
title: '危险操作',
@@ -152,10 +172,7 @@ async function clearAllCache() {
confirmText: '继续',
variant: 'destructive'
})
if (!firstConfirm) {
return
}
if (!firstConfirm) return
const secondConfirm = await showConfirm({
title: '再次确认',
@@ -163,10 +180,7 @@ async function clearAllCache() {
confirmText: '确认清除',
variant: 'destructive'
})
if (!secondConfirm) {
return
}
if (!secondConfirm) return
try {
await cacheApi.clearAllCache()
@@ -179,33 +193,39 @@ async function clearAllCache() {
}
}
// 计算剩余时间(使用实时更新的 currentTime
function getRemainingTime(expireAt?: number) {
if (!expireAt) return '未知'
const remaining = expireAt - currentTime.value
if (remaining <= 0) return '已过期'
// ==================== 工具方法 ====================
const minutes = Math.floor(remaining / 60)
const seconds = Math.floor(remaining % 60)
return `${minutes}${seconds}`
function getRemainingTime(expireAt?: number): string {
return formatRemainingTime(expireAt, currentTime.value)
}
// 启动倒计时定时器
function startCountdown() {
if (countdownTimer) {
clearInterval(countdownTimer)
function formatIntervalDescription(user: TTLAnalysisUser): string {
const p90 = user.percentiles.p90
if (p90 === null || p90 === undefined) return '-'
if (p90 < 1) {
const seconds = Math.round(p90 * 60)
return `90% 请求间隔 < ${seconds}`
}
return `90% 请求间隔 < ${p90.toFixed(1)} 分钟`
}
function handlePageChange() {
window.scrollTo({ top: 0, behavior: 'smooth' })
}
// ==================== 定时器管理 ====================
function startCountdown() {
if (countdownTimer) clearInterval(countdownTimer)
countdownTimer = setInterval(() => {
currentTime.value = Math.floor(Date.now() / 1000)
// 过滤掉已过期的项目
const beforeCount = affinityList.value.length
affinityList.value = affinityList.value.filter(item => {
return item.expire_at && item.expire_at > currentTime.value
})
affinityList.value = affinityList.value.filter(
item => item.expire_at && item.expire_at > currentTime.value
)
// 如果有项目被移除,显示提示
if (beforeCount > affinityList.value.length) {
const removedCount = beforeCount - affinityList.value.length
showInfo(`${removedCount} 个缓存已自动过期移除`)
@@ -213,7 +233,6 @@ function startCountdown() {
}, 1000)
}
// 停止倒计时定时器
function stopCountdown() {
if (countdownTimer) {
clearInterval(countdownTimer)
@@ -221,15 +240,25 @@ function stopCountdown() {
}
}
// ==================== 刷新所有数据 ====================
async function refreshData() {
await Promise.all([
fetchCacheStats(),
fetchCacheConfig(),
fetchAffinityList()
])
}
// ==================== 生命周期 ====================
watch(tableKeyword, (value) => {
if (skipNextKeywordWatch) {
skipNextKeywordWatch = false
return
}
if (searchDebounceTimer) {
clearTimeout(searchDebounceTimer)
}
if (searchDebounceTimer) clearTimeout(searchDebounceTimer)
const keyword = value.trim()
searchDebounceTimer = setTimeout(() => {
@@ -243,21 +272,11 @@ onMounted(() => {
fetchCacheConfig()
fetchAffinityList()
startCountdown()
refreshAnalysis()
})
// 刷新所有数据
async function refreshData() {
await Promise.all([
fetchCacheStats(),
fetchCacheConfig(),
fetchAffinityList()
])
}
onBeforeUnmount(() => {
if (searchDebounceTimer) {
clearTimeout(searchDebounceTimer)
}
if (searchDebounceTimer) clearTimeout(searchDebounceTimer)
stopCountdown()
})
</script>
@@ -272,31 +291,18 @@ onBeforeUnmount(() => {
</p>
</div>
<!-- 核心指标 -->
<!-- 亲和性系统状态 -->
<div class="grid grid-cols-2 md:grid-cols-4 gap-4">
<!-- 缓存命中率 -->
<Card class="p-4">
<div class="text-xs text-muted-foreground">命中率</div>
<div class="text-2xl font-bold text-success mt-1">
{{ stats ? (stats.affinity_stats.cache_hit_rate * 100).toFixed(1) : '0.0' }}%
</div>
<div class="text-xs text-muted-foreground mt-1">
{{ stats?.affinity_stats?.cache_hits || 0 }} / {{ (stats?.affinity_stats?.cache_hits || 0) + (stats?.affinity_stats?.cache_misses || 0) }}
</div>
</Card>
<!-- 活跃缓存数 -->
<Card class="p-4">
<div class="text-xs text-muted-foreground">活跃缓存</div>
<div class="text-xs text-muted-foreground">活跃亲和性</div>
<div class="text-2xl font-bold mt-1">
{{ stats?.affinity_stats?.total_affinities || 0 }}
{{ stats?.affinity_stats?.active_affinities || 0 }}
</div>
<div class="text-xs text-muted-foreground mt-1">
TTL {{ config?.cache_ttl_seconds || 300 }}s
</div>
</Card>
<!-- Provider切换 -->
<Card class="p-4">
<div class="text-xs text-muted-foreground">Provider 切换</div>
<div class="text-2xl font-bold mt-1" :class="(stats?.affinity_stats?.provider_switches || 0) > 0 ? 'text-destructive' : ''">
@@ -307,7 +313,16 @@ onBeforeUnmount(() => {
</div>
</Card>
<!-- 预留比例 -->
<Card class="p-4">
<div class="text-xs text-muted-foreground">缓存失效</div>
<div class="text-2xl font-bold mt-1" :class="(stats?.affinity_stats?.cache_invalidations || 0) > 0 ? 'text-warning' : ''">
{{ stats?.affinity_stats?.cache_invalidations || 0 }}
</div>
<div class="text-xs text-muted-foreground mt-1">
Provider 不可用
</div>
</Card>
<Card class="p-4">
<div class="text-xs text-muted-foreground flex items-center gap-1">
预留比例
@@ -322,14 +337,13 @@ onBeforeUnmount(() => {
</template>
</div>
<div class="text-xs text-muted-foreground mt-1">
失效 {{ stats?.affinity_stats?.cache_invalidations || 0 }}
当前 {{ stats ? (stats.cache_reservation_ratio * 100).toFixed(0) : '-' }}%
</div>
</Card>
</div>
<!-- 缓存亲和性列表 -->
<Card class="overflow-hidden">
<!-- 标题和操作栏 -->
<div class="px-6 py-3 border-b border-border/60">
<div class="flex items-center justify-between gap-4">
<div class="flex items-center gap-3">
@@ -365,8 +379,8 @@ onBeforeUnmount(() => {
<Table>
<TableHeader>
<TableRow>
<TableHead class="w-28">用户</TableHead>
<TableHead class="w-36">Key</TableHead>
<TableHead class="w-36">用户</TableHead>
<TableHead class="w-28">Key</TableHead>
<TableHead class="w-28">Provider</TableHead>
<TableHead class="w-40">模型</TableHead>
<TableHead class="w-36">API 格式 / Key</TableHead>
@@ -380,12 +394,12 @@ onBeforeUnmount(() => {
<TableCell>
<div class="flex items-center gap-1.5">
<Badge v-if="item.is_standalone" variant="outline" class="text-warning border-warning/30 text-[10px] px-1">独立</Badge>
<span class="text-sm font-medium truncate max-w-[90px]" :title="item.username ?? undefined">{{ item.username || '未知' }}</span>
<span class="text-sm font-medium truncate max-w-[120px]" :title="item.username ?? undefined">{{ item.username || '未知' }}</span>
</div>
</TableCell>
<TableCell>
<div class="flex items-center gap-1.5">
<span class="text-sm truncate max-w-[100px]" :title="item.user_api_key_name || undefined">{{ item.user_api_key_name || '未命名' }}</span>
<span class="text-sm truncate max-w-[80px]" :title="item.user_api_key_name || undefined">{{ item.user_api_key_name || '未命名' }}</span>
<Badge v-if="item.rate_multiplier !== 1.0" variant="outline" class="text-warning border-warning/30 text-[10px] px-2">{{ item.rate_multiplier }}x</Badge>
</div>
<div class="text-xs text-muted-foreground font-mono">{{ item.user_api_key_prefix || '---' }}</div>
@@ -439,5 +453,157 @@ onBeforeUnmount(() => {
@update:page-size="pageSize = $event"
/>
</Card>
<!-- TTL 分析区域 -->
<Card class="overflow-hidden">
<div class="px-6 py-3 border-b border-border/60">
<div class="flex items-center justify-between gap-4">
<div class="flex items-center gap-3">
<BarChart3 class="h-5 w-5 text-muted-foreground" />
<h3 class="text-base font-semibold">TTL 分析</h3>
<span class="text-xs text-muted-foreground">分析用户请求间隔推荐合适的缓存 TTL</span>
</div>
<div class="flex items-center gap-2">
<Select v-model="analysisHours">
<SelectTrigger class="w-28 h-8">
<SelectValue placeholder="时间段" />
</SelectTrigger>
<SelectContent>
<SelectItem
v-for="option in ANALYSIS_HOURS_OPTIONS"
:key="option.value"
:value="option.value"
>
{{ option.label }}
</SelectItem>
</SelectContent>
</Select>
</div>
</div>
</div>
<!-- 缓存命中概览 -->
<div v-if="hitAnalysis" class="px-6 py-4 border-b border-border/40 bg-muted/30">
<div class="grid grid-cols-2 md:grid-cols-5 gap-6">
<div>
<div class="text-xs text-muted-foreground">请求命中率</div>
<div class="text-2xl font-bold text-success">{{ hitAnalysis.request_cache_hit_rate }}%</div>
<div class="text-xs text-muted-foreground">{{ formatNumber(hitAnalysis.requests_with_cache_hit) }} / {{ formatNumber(hitAnalysis.total_requests) }} 请求</div>
</div>
<div>
<div class="text-xs text-muted-foreground">Token 命中率</div>
<div class="text-2xl font-bold">{{ hitAnalysis.token_cache_hit_rate }}%</div>
<div class="text-xs text-muted-foreground">{{ formatTokens(hitAnalysis.total_cache_read_tokens) }} tokens 命中</div>
</div>
<div>
<div class="text-xs text-muted-foreground">缓存创建费用</div>
<div class="text-2xl font-bold">{{ formatCost(hitAnalysis.total_cache_creation_cost_usd) }}</div>
<div class="text-xs text-muted-foreground">{{ formatTokens(hitAnalysis.total_cache_creation_tokens) }} tokens</div>
</div>
<div>
<div class="text-xs text-muted-foreground">缓存读取费用</div>
<div class="text-2xl font-bold">{{ formatCost(hitAnalysis.total_cache_read_cost_usd) }}</div>
<div class="text-xs text-muted-foreground">{{ formatTokens(hitAnalysis.total_cache_read_tokens) }} tokens</div>
</div>
<div>
<div class="text-xs text-muted-foreground">预估节省</div>
<div class="text-2xl font-bold text-success">{{ formatCost(hitAnalysis.estimated_savings_usd) }}</div>
</div>
</div>
</div>
<!-- 用户 TTL 分析表格 -->
<Table v-if="ttlAnalysis && ttlAnalysis.users.length > 0">
<TableHeader>
<TableRow>
<TableHead class="w-10"></TableHead>
<TableHead class="w-[20%]">用户</TableHead>
<TableHead class="w-[15%] text-center">请求数</TableHead>
<TableHead class="w-[15%] text-center">使用频率</TableHead>
<TableHead class="w-[15%] text-center">推荐 TTL</TableHead>
<TableHead>说明</TableHead>
</TableRow>
</TableHeader>
<TableBody>
<template v-for="user in ttlAnalysis.users" :key="user.group_id">
<TableRow
class="cursor-pointer hover:bg-muted/50"
@click="toggleUserExpand(user.group_id)"
>
<TableCell class="p-2">
<button class="p-1 hover:bg-muted rounded">
<ChevronDown v-if="expandedUserId === user.group_id" class="h-4 w-4 text-muted-foreground" />
<ChevronRight v-else class="h-4 w-4 text-muted-foreground" />
</button>
</TableCell>
<TableCell>
<span class="text-sm font-medium">{{ user.username || '未知用户' }}</span>
</TableCell>
<TableCell class="text-center">
<span class="text-sm font-medium">{{ user.request_count }}</span>
</TableCell>
<TableCell class="text-center">
<span class="text-sm" :class="getFrequencyClass(user.recommended_ttl_minutes)">
{{ getFrequencyLabel(user.recommended_ttl_minutes) }}
</span>
</TableCell>
<TableCell class="text-center">
<Badge :variant="getTTLBadgeVariant(user.recommended_ttl_minutes)">
{{ user.recommended_ttl_minutes }} 分钟
</Badge>
</TableCell>
<TableCell>
<span class="text-xs text-muted-foreground">
{{ formatIntervalDescription(user) }}
</span>
</TableCell>
</TableRow>
<!-- 展开行显示用户散点图 -->
<TableRow v-if="expandedUserId === user.group_id" class="bg-muted/30">
<TableCell colspan="6" class="p-0">
<div class="px-6 py-4">
<div class="flex items-center justify-between mb-3">
<h4 class="text-sm font-medium">请求间隔时间线</h4>
<div class="flex items-center gap-3 text-xs text-muted-foreground">
<span class="flex items-center gap-1"><span class="w-2 h-2 rounded-full bg-green-500"></span> 0-5分钟</span>
<span class="flex items-center gap-1"><span class="w-2 h-2 rounded-full bg-blue-500"></span> 5-15分钟</span>
<span class="flex items-center gap-1"><span class="w-2 h-2 rounded-full bg-purple-500"></span> 15-30分钟</span>
<span class="flex items-center gap-1"><span class="w-2 h-2 rounded-full bg-orange-500"></span> 30-60分钟</span>
<span class="flex items-center gap-1"><span class="w-2 h-2 rounded-full bg-red-500"></span> >60分钟</span>
<span v-if="userTimelineData" class="ml-2"> {{ userTimelineData.total_points }} 个数据点</span>
</div>
</div>
<div v-if="userTimelineLoading" class="h-64 flex items-center justify-center">
<span class="text-sm text-muted-foreground">加载中...</span>
</div>
<div v-else-if="userTimelineData && userTimelineData.points.length > 0" class="h-64">
<ScatterChart :data="userTimelineChartData" />
</div>
<div v-else class="h-64 flex items-center justify-center">
<span class="text-sm text-muted-foreground">暂无数据</span>
</div>
</div>
</TableCell>
</TableRow>
</template>
</TableBody>
</Table>
<!-- 分析完成但无数据 -->
<div v-else-if="ttlAnalysis && ttlAnalysis.users.length === 0" class="px-6 py-12 text-center">
<BarChart3 class="h-12 w-12 text-muted-foreground/50 mx-auto mb-3" />
<p class="text-sm text-muted-foreground">
未找到符合条件的用户数据
</p>
<p class="text-xs text-muted-foreground mt-1">
尝试增加分析天数或降低最小请求数阈值
</p>
</div>
<!-- 加载中 -->
<div v-else-if="ttlAnalysisLoading" class="px-6 py-12 text-center">
<p class="text-sm text-muted-foreground">正在分析用户请求数据...</p>
</div>
</Card>
</div>
</template>

View File

@@ -1,10 +1,17 @@
<template>
<div class="space-y-6 pb-8">
<!-- 活跃度热图 -->
<ActivityHeatmapCard
:data="activityHeatmapData"
:title="isAdminPage ? '总体活跃天数' : '我的活跃天数'"
/>
<!-- 活跃度热图 + 请求间隔时间线 -->
<div class="grid grid-cols-1 xl:grid-cols-2 gap-4">
<ActivityHeatmapCard
:data="activityHeatmapData"
:title="isAdminPage ? '总体活跃天数' : '我的活跃天数'"
/>
<IntervalTimelineCard
:title="isAdminPage ? '请求间隔时间线' : '我的请求间隔'"
:is-admin="isAdminPage"
:hours="168"
/>
</div>
<!-- 分析统计 -->
<!-- 管理员模型 + 提供商 + API格式3 -->
@@ -87,7 +94,8 @@ import {
UsageApiFormatTable,
UsageRecordsTable,
ActivityHeatmapCard,
RequestDetailDrawer
RequestDetailDrawer,
IntervalTimelineCard
} from '@/features/usage/components'
import {
useUsageData,

View File

@@ -800,3 +800,184 @@ class AdminUsageDetailAdapter(AdminApiAdapter):
"tiers": tiers,
"source": pricing_source, # 定价来源: 'provider' 或 'global'
}
# ==================== 缓存亲和性分析 ====================
@router.get("/cache-affinity/ttl-analysis")
async def analyze_cache_affinity_ttl(
request: Request,
user_id: Optional[str] = Query(None, description="指定用户 ID"),
api_key_id: Optional[str] = Query(None, description="指定 API Key ID"),
hours: int = Query(168, ge=1, le=720, description="分析最近多少小时的数据"),
db: Session = Depends(get_db),
):
"""
分析用户请求间隔分布,推荐合适的缓存亲和性 TTL。
通过分析同一用户连续请求之间的时间间隔,判断用户的使用模式:
- 高频用户间隔短5 分钟 TTL 足够
- 中频用户15-30 分钟 TTL
- 低频用户(间隔长):需要 60 分钟 TTL
"""
adapter = CacheAffinityTTLAnalysisAdapter(
user_id=user_id,
api_key_id=api_key_id,
hours=hours,
)
return await pipeline.run(adapter=adapter, http_request=request, db=db, mode=adapter.mode)
@router.get("/cache-affinity/hit-analysis")
async def analyze_cache_hit(
request: Request,
user_id: Optional[str] = Query(None, description="指定用户 ID"),
api_key_id: Optional[str] = Query(None, description="指定 API Key ID"),
hours: int = Query(168, ge=1, le=720, description="分析最近多少小时的数据"),
db: Session = Depends(get_db),
):
"""
分析缓存命中情况。
返回缓存命中率、节省的费用等统计信息。
"""
adapter = CacheHitAnalysisAdapter(
user_id=user_id,
api_key_id=api_key_id,
hours=hours,
)
return await pipeline.run(adapter=adapter, http_request=request, db=db, mode=adapter.mode)
class CacheAffinityTTLAnalysisAdapter(AdminApiAdapter):
"""缓存亲和性 TTL 分析适配器"""
def __init__(
self,
user_id: Optional[str],
api_key_id: Optional[str],
hours: int,
):
self.user_id = user_id
self.api_key_id = api_key_id
self.hours = hours
async def handle(self, context): # type: ignore[override]
db = context.db
result = UsageService.analyze_cache_affinity_ttl(
db=db,
user_id=self.user_id,
api_key_id=self.api_key_id,
hours=self.hours,
)
context.add_audit_metadata(
action="cache_affinity_ttl_analysis",
user_id=self.user_id,
api_key_id=self.api_key_id,
hours=self.hours,
total_users_analyzed=result.get("total_users_analyzed", 0),
)
return result
class CacheHitAnalysisAdapter(AdminApiAdapter):
"""缓存命中分析适配器"""
def __init__(
self,
user_id: Optional[str],
api_key_id: Optional[str],
hours: int,
):
self.user_id = user_id
self.api_key_id = api_key_id
self.hours = hours
async def handle(self, context): # type: ignore[override]
db = context.db
result = UsageService.get_cache_hit_analysis(
db=db,
user_id=self.user_id,
api_key_id=self.api_key_id,
hours=self.hours,
)
context.add_audit_metadata(
action="cache_hit_analysis",
user_id=self.user_id,
api_key_id=self.api_key_id,
hours=self.hours,
)
return result
@router.get("/cache-affinity/interval-timeline")
async def get_interval_timeline(
request: Request,
hours: int = Query(168, ge=1, le=720, description="分析最近多少小时的数据"),
limit: int = Query(1000, ge=100, le=5000, description="最大返回数据点数量"),
user_id: Optional[str] = Query(None, description="指定用户 ID"),
include_user_info: bool = Query(False, description="是否包含用户信息(用于管理员多用户视图)"),
db: Session = Depends(get_db),
):
"""
获取请求间隔时间线数据,用于散点图展示。
返回每个请求的时间点和与上一个请求的间隔(分钟),
可用于可视化用户请求模式。
当 include_user_info=true 且未指定 user_id 时,返回数据会包含:
- points 中每个点包含 user_id 字段
- users 字段包含 user_id -> username 的映射
"""
adapter = IntervalTimelineAdapter(
hours=hours,
limit=limit,
user_id=user_id,
include_user_info=include_user_info,
)
return await pipeline.run(adapter=adapter, http_request=request, db=db, mode=adapter.mode)
class IntervalTimelineAdapter(AdminApiAdapter):
"""请求间隔时间线适配器"""
def __init__(
self,
hours: int,
limit: int,
user_id: Optional[str] = None,
include_user_info: bool = False,
):
self.hours = hours
self.limit = limit
self.user_id = user_id
self.include_user_info = include_user_info
async def handle(self, context): # type: ignore[override]
db = context.db
result = UsageService.get_interval_timeline(
db=db,
hours=self.hours,
limit=self.limit,
user_id=self.user_id,
include_user_info=self.include_user_info,
)
context.add_audit_metadata(
action="interval_timeline",
hours=self.hours,
limit=self.limit,
user_id=self.user_id,
include_user_info=self.include_user_info,
total_points=result.get("total_points", 0),
)
return result

View File

@@ -121,6 +121,18 @@ async def get_my_active_requests(
return await pipeline.run(adapter=adapter, http_request=request, db=db, mode=adapter.mode)
@router.get("/usage/interval-timeline")
async def get_my_interval_timeline(
request: Request,
hours: int = Query(168, ge=1, le=720, description="分析最近多少小时的数据"),
limit: int = Query(1000, ge=100, le=5000, description="最大返回数据点数量"),
db: Session = Depends(get_db),
):
"""获取当前用户的请求间隔时间线数据,用于散点图展示"""
adapter = GetMyIntervalTimelineAdapter(hours=hours, limit=limit)
return await pipeline.run(adapter=adapter, http_request=request, db=db, mode=adapter.mode)
@router.get("/providers")
async def list_available_providers(request: Request, db: Session = Depends(get_db)):
adapter = ListAvailableProvidersAdapter()
@@ -676,6 +688,27 @@ class GetActiveRequestsAdapter(AuthenticatedApiAdapter):
return {"requests": requests}
@dataclass
class GetMyIntervalTimelineAdapter(AuthenticatedApiAdapter):
"""获取当前用户的请求间隔时间线适配器"""
hours: int
limit: int
async def handle(self, context): # type: ignore[override]
db = context.db
user = context.user
result = UsageService.get_interval_timeline(
db=db,
hours=self.hours,
limit=self.limit,
user_id=str(user.id),
)
return result
class ListAvailableProvidersAdapter(AuthenticatedApiAdapter):
async def handle(self, context): # type: ignore[override]
from sqlalchemy.orm import selectinload

View File

@@ -862,13 +862,14 @@ class CacheAwareScheduler:
# Key 级别的能力匹配检查
# 注意:模型级别的能力检查已在 _check_model_support 中完成
if capability_requirements:
from src.core.key_capabilities import check_capability_match
# 始终执行检查,即使 capability_requirements 为空
# 因为 check_capability_match 会检查 Key 的 EXCLUSIVE 能力是否被浪费
from src.core.key_capabilities import check_capability_match
key_caps: Dict[str, bool] = dict(key.capabilities or {})
is_match, skip_reason = check_capability_match(key_caps, capability_requirements)
if not is_match:
return False, skip_reason
key_caps: Dict[str, bool] = dict(key.capabilities or {})
is_match, skip_reason = check_capability_match(key_caps, capability_requirements)
if not is_match:
return False, skip_reason
return True, None

View File

@@ -67,12 +67,13 @@ class ErrorClassifier:
# 表示客户端请求错误的关键词(不区分大小写)
# 这些错误是由用户请求本身导致的,换 Provider 也无济于事
# 注意:标准 API 返回的 error.type 已在 CLIENT_ERROR_TYPES 中处理
# 这里主要用于匹配非标准格式或第三方代理的错误消息
CLIENT_ERROR_PATTERNS: Tuple[str, ...] = (
"could not process image", # 图片处理失败
"image too large", # 图片过大
"invalid image", # 无效图片
"unsupported image", # 不支持的图片格式
"invalid_request_error", # OpenAI/Claude 通用客户端错误类型
"content_policy_violation", # 内容违规
"invalid_api_key", # 无效的 API Key不同于认证失败
"context_length_exceeded", # 上下文长度超限
@@ -85,6 +86,7 @@ class ErrorClassifier:
"image exceeds", # 图片超出限制
"pdf too large", # PDF 过大
"file too large", # 文件过大
"tool_use_id", # tool_result 引用了不存在的 tool_use兼容非标准代理
)
def __init__(
@@ -105,10 +107,22 @@ class ErrorClassifier:
self.adaptive_manager = adaptive_manager or get_adaptive_manager()
self.cache_scheduler = cache_scheduler
# 表示客户端错误的 error type不区分大小写
# 这些 type 表明是请求本身的问题,不应重试
CLIENT_ERROR_TYPES: Tuple[str, ...] = (
"invalid_request_error", # Claude/OpenAI 标准客户端错误类型
"invalid_argument", # Gemini 参数错误
"failed_precondition", # Gemini 前置条件错误
)
def _is_client_error(self, error_text: Optional[str]) -> bool:
"""
检测错误响应是否为客户端错误(不应重试)
判断逻辑:
1. 检查 error.type 是否为已知的客户端错误类型
2. 检查错误文本是否包含已知的客户端错误模式
Args:
error_text: 错误响应文本
@@ -118,6 +132,19 @@ class ErrorClassifier:
if not error_text:
return False
# 尝试解析 JSON 并检查 error type
try:
data = json.loads(error_text)
if isinstance(data.get("error"), dict):
error_type = data["error"].get("type", "")
if error_type and any(
t.lower() in error_type.lower() for t in self.CLIENT_ERROR_TYPES
):
return True
except (json.JSONDecodeError, TypeError, KeyError):
pass
# 回退到关键词匹配
error_lower = error_text.lower()
return any(pattern.lower() in error_lower for pattern in self.CLIENT_ERROR_PATTERNS)

View File

@@ -1394,3 +1394,461 @@ class UsageService:
}
for r in records
]
# ========== 缓存亲和性分析方法 ==========
@staticmethod
def analyze_cache_affinity_ttl(
db: Session,
user_id: Optional[str] = None,
api_key_id: Optional[str] = None,
hours: int = 168,
) -> Dict[str, Any]:
"""
分析用户请求间隔分布,推荐合适的缓存亲和性 TTL
通过分析同一用户连续请求之间的时间间隔,判断用户的使用模式:
- 高频用户间隔短5 分钟 TTL 足够
- 中频用户15-30 分钟 TTL
- 低频用户(间隔长):需要 60 分钟 TTL
Args:
db: 数据库会话
user_id: 指定用户 ID可选为空则分析所有用户
api_key_id: 指定 API Key ID可选
hours: 分析最近多少小时的数据
Returns:
包含分析结果的字典
"""
from sqlalchemy import text
# 计算时间范围
start_date = datetime.now(timezone.utc) - timedelta(hours=hours)
# 构建 SQL 查询 - 使用窗口函数计算请求间隔
# 按 user_id 或 api_key_id 分组,计算同一组内连续请求的时间差
group_by_field = "api_key_id" if api_key_id else "user_id"
# 构建过滤条件
filter_clause = ""
if user_id or api_key_id:
filter_clause = f"AND {group_by_field} = :filter_id"
sql = text(f"""
WITH user_requests AS (
SELECT
{group_by_field} as group_id,
created_at,
LAG(created_at) OVER (
PARTITION BY {group_by_field}
ORDER BY created_at
) as prev_request_at
FROM usage
WHERE status = 'completed'
AND created_at > :start_date
AND {group_by_field} IS NOT NULL
{filter_clause}
),
intervals AS (
SELECT
group_id,
EXTRACT(EPOCH FROM (created_at - prev_request_at)) / 60.0 as interval_minutes
FROM user_requests
WHERE prev_request_at IS NOT NULL
),
user_stats AS (
SELECT
group_id,
COUNT(*) as request_count,
COUNT(*) FILTER (WHERE interval_minutes <= 5) as within_5min,
COUNT(*) FILTER (WHERE interval_minutes > 5 AND interval_minutes <= 15) as within_15min,
COUNT(*) FILTER (WHERE interval_minutes > 15 AND interval_minutes <= 30) as within_30min,
COUNT(*) FILTER (WHERE interval_minutes > 30 AND interval_minutes <= 60) as within_60min,
COUNT(*) FILTER (WHERE interval_minutes > 60) as over_60min,
PERCENTILE_CONT(0.5) WITHIN GROUP (ORDER BY interval_minutes) as median_interval,
PERCENTILE_CONT(0.75) WITHIN GROUP (ORDER BY interval_minutes) as p75_interval,
PERCENTILE_CONT(0.90) WITHIN GROUP (ORDER BY interval_minutes) as p90_interval,
AVG(interval_minutes) as avg_interval,
MIN(interval_minutes) as min_interval,
MAX(interval_minutes) as max_interval
FROM intervals
GROUP BY group_id
HAVING COUNT(*) >= 2
)
SELECT * FROM user_stats
ORDER BY request_count DESC
""")
params: Dict[str, Any] = {
"start_date": start_date,
}
if user_id:
params["filter_id"] = user_id
elif api_key_id:
params["filter_id"] = api_key_id
result = db.execute(sql, params)
rows = result.fetchall()
# 收集所有 user_id 以便批量查询用户信息
group_ids = [row[0] for row in rows]
# 如果是按 user_id 分组,查询用户信息
user_info_map: Dict[str, Dict[str, str]] = {}
if group_by_field == "user_id" and group_ids:
users = db.query(User).filter(User.id.in_(group_ids)).all()
for user in users:
user_info_map[str(user.id)] = {
"username": user.username,
"email": user.email or "",
}
# 处理结果
users_analysis = []
for row in rows:
# row 是一个 tuple按查询顺序访问
(
group_id,
request_count,
within_5min,
within_15min,
within_30min,
within_60min,
over_60min,
median_interval,
p75_interval,
p90_interval,
avg_interval,
min_interval,
max_interval,
) = row
# 计算推荐 TTL
recommended_ttl = UsageService._calculate_recommended_ttl(
p75_interval, p90_interval
)
# 获取用户信息
user_info = user_info_map.get(str(group_id), {})
# 计算各区间占比
total_intervals = request_count
users_analysis.append({
"group_id": group_id,
"username": user_info.get("username"),
"email": user_info.get("email"),
"request_count": request_count,
"interval_distribution": {
"within_5min": within_5min,
"within_15min": within_15min,
"within_30min": within_30min,
"within_60min": within_60min,
"over_60min": over_60min,
},
"interval_percentages": {
"within_5min": round(within_5min / total_intervals * 100, 1),
"within_15min": round(within_15min / total_intervals * 100, 1),
"within_30min": round(within_30min / total_intervals * 100, 1),
"within_60min": round(within_60min / total_intervals * 100, 1),
"over_60min": round(over_60min / total_intervals * 100, 1),
},
"percentiles": {
"p50": round(float(median_interval), 2) if median_interval else None,
"p75": round(float(p75_interval), 2) if p75_interval else None,
"p90": round(float(p90_interval), 2) if p90_interval else None,
},
"avg_interval_minutes": round(float(avg_interval), 2) if avg_interval else None,
"min_interval_minutes": round(float(min_interval), 2) if min_interval else None,
"max_interval_minutes": round(float(max_interval), 2) if max_interval else None,
"recommended_ttl_minutes": recommended_ttl,
"recommendation_reason": UsageService._get_ttl_recommendation_reason(
recommended_ttl, p75_interval, p90_interval
),
})
# 汇总统计
ttl_distribution = {"5min": 0, "15min": 0, "30min": 0, "60min": 0}
for analysis in users_analysis:
ttl = analysis["recommended_ttl_minutes"]
if ttl <= 5:
ttl_distribution["5min"] += 1
elif ttl <= 15:
ttl_distribution["15min"] += 1
elif ttl <= 30:
ttl_distribution["30min"] += 1
else:
ttl_distribution["60min"] += 1
return {
"analysis_period_hours": hours,
"total_users_analyzed": len(users_analysis),
"ttl_distribution": ttl_distribution,
"users": users_analysis,
}
@staticmethod
def _calculate_recommended_ttl(
p75_interval: Optional[float],
p90_interval: Optional[float],
) -> int:
"""
根据请求间隔分布计算推荐的缓存 TTL
策略:
- 如果 90% 的请求间隔都在 5 分钟内 → 5 分钟 TTL
- 如果 75% 的请求间隔在 15 分钟内 → 15 分钟 TTL
- 如果 75% 的请求间隔在 30 分钟内 → 30 分钟 TTL
- 否则 → 60 分钟 TTL
"""
if p90_interval is None or p75_interval is None:
return 5 # 默认值
# 如果 90% 的间隔都在 5 分钟内
if p90_interval <= 5:
return 5
# 如果 75% 的间隔在 15 分钟内
if p75_interval <= 15:
return 15
# 如果 75% 的间隔在 30 分钟内
if p75_interval <= 30:
return 30
# 低频用户,需要更长的 TTL
return 60
@staticmethod
def _get_ttl_recommendation_reason(
ttl: int,
p75_interval: Optional[float],
p90_interval: Optional[float],
) -> str:
"""生成 TTL 推荐理由"""
if p75_interval is None or p90_interval is None:
return "数据不足,使用默认值"
if ttl == 5:
return f"高频用户90% 的请求间隔在 {p90_interval:.1f} 分钟内"
elif ttl == 15:
return f"中高频用户75% 的请求间隔在 {p75_interval:.1f} 分钟内"
elif ttl == 30:
return f"中频用户75% 的请求间隔在 {p75_interval:.1f} 分钟内"
else:
return f"低频用户75% 的请求间隔为 {p75_interval:.1f} 分钟,建议使用长 TTL"
@staticmethod
def get_cache_hit_analysis(
db: Session,
user_id: Optional[str] = None,
api_key_id: Optional[str] = None,
hours: int = 168,
) -> Dict[str, Any]:
"""
分析缓存命中情况
Args:
db: 数据库会话
user_id: 指定用户 ID可选
api_key_id: 指定 API Key ID可选
hours: 分析最近多少小时的数据
Returns:
缓存命中分析结果
"""
start_date = datetime.now(timezone.utc) - timedelta(hours=hours)
# 基础查询
query = db.query(
func.count(Usage.id).label("total_requests"),
func.sum(Usage.input_tokens).label("total_input_tokens"),
func.sum(Usage.cache_read_input_tokens).label("total_cache_read_tokens"),
func.sum(Usage.cache_creation_input_tokens).label("total_cache_creation_tokens"),
func.sum(Usage.cache_read_cost_usd).label("total_cache_read_cost"),
func.sum(Usage.cache_creation_cost_usd).label("total_cache_creation_cost"),
).filter(
Usage.status == "completed",
Usage.created_at >= start_date,
)
if user_id:
query = query.filter(Usage.user_id == user_id)
if api_key_id:
query = query.filter(Usage.api_key_id == api_key_id)
result = query.first()
total_requests = result.total_requests or 0
total_input_tokens = result.total_input_tokens or 0
total_cache_read_tokens = result.total_cache_read_tokens or 0
total_cache_creation_tokens = result.total_cache_creation_tokens or 0
total_cache_read_cost = float(result.total_cache_read_cost or 0)
total_cache_creation_cost = float(result.total_cache_creation_cost or 0)
# 计算缓存命中率(按 token 数)
# 总输入上下文 = input_tokens + cache_read_tokens因为 input_tokens 不含 cache_read
# 或者如果 input_tokens 已经包含 cache_read则直接用 input_tokens
# 这里假设 cache_read_tokens 是额外的,命中率 = cache_read / (input + cache_read)
total_context_tokens = total_input_tokens + total_cache_read_tokens
cache_hit_rate = 0.0
if total_context_tokens > 0:
cache_hit_rate = total_cache_read_tokens / total_context_tokens * 100
# 计算节省的费用
# 缓存读取价格是正常输入价格的 10%,所以节省了 90%
# 节省 = cache_read_tokens * (正常价格 - 缓存价格) = cache_read_cost * 9
# 因为 cache_read_cost 是按 10% 价格算的,如果按 100% 算就是 10 倍
estimated_savings = total_cache_read_cost * 9 # 节省了 90%
# 统计有缓存命中的请求数
requests_with_cache_hit = db.query(func.count(Usage.id)).filter(
Usage.status == "completed",
Usage.created_at >= start_date,
Usage.cache_read_input_tokens > 0,
)
if user_id:
requests_with_cache_hit = requests_with_cache_hit.filter(Usage.user_id == user_id)
if api_key_id:
requests_with_cache_hit = requests_with_cache_hit.filter(Usage.api_key_id == api_key_id)
requests_with_cache_hit = requests_with_cache_hit.scalar() or 0
return {
"analysis_period_hours": hours,
"total_requests": total_requests,
"requests_with_cache_hit": requests_with_cache_hit,
"request_cache_hit_rate": round(requests_with_cache_hit / total_requests * 100, 2) if total_requests > 0 else 0,
"total_input_tokens": total_input_tokens,
"total_cache_read_tokens": total_cache_read_tokens,
"total_cache_creation_tokens": total_cache_creation_tokens,
"token_cache_hit_rate": round(cache_hit_rate, 2),
"total_cache_read_cost_usd": round(total_cache_read_cost, 4),
"total_cache_creation_cost_usd": round(total_cache_creation_cost, 4),
"estimated_savings_usd": round(estimated_savings, 4),
}
@staticmethod
def get_interval_timeline(
db: Session,
hours: int = 168,
limit: int = 1000,
user_id: Optional[str] = None,
include_user_info: bool = False,
) -> Dict[str, Any]:
"""
获取请求间隔时间线数据,用于散点图展示
Args:
db: 数据库会话
hours: 分析最近多少小时的数据
limit: 最大返回数据点数量
user_id: 指定用户 ID可选为空则返回所有用户
include_user_info: 是否包含用户信息(用于管理员多用户视图)
Returns:
包含时间线数据点的字典
"""
from sqlalchemy import text
start_date = datetime.now(timezone.utc) - timedelta(hours=hours)
# 构建用户过滤条件
user_filter = "AND u.user_id = :user_id" if user_id else ""
# 根据是否需要用户信息选择不同的查询
if include_user_info and not user_id:
# 管理员视图:返回带用户信息的数据点
sql = text(f"""
WITH request_intervals AS (
SELECT
u.created_at,
u.user_id,
usr.username,
LAG(u.created_at) OVER (
PARTITION BY u.user_id
ORDER BY u.created_at
) as prev_request_at
FROM usage u
LEFT JOIN users usr ON u.user_id = usr.id
WHERE u.status = 'completed'
AND u.created_at > :start_date
AND u.user_id IS NOT NULL
{user_filter}
)
SELECT
created_at,
user_id,
username,
EXTRACT(EPOCH FROM (created_at - prev_request_at)) / 60.0 as interval_minutes
FROM request_intervals
WHERE prev_request_at IS NOT NULL
AND EXTRACT(EPOCH FROM (created_at - prev_request_at)) / 60.0 <= 120
ORDER BY created_at
LIMIT :limit
""")
else:
# 普通视图:只返回时间和间隔
sql = text(f"""
WITH request_intervals AS (
SELECT
u.created_at,
u.user_id,
LAG(u.created_at) OVER (
PARTITION BY u.user_id
ORDER BY u.created_at
) as prev_request_at
FROM usage u
WHERE u.status = 'completed'
AND u.created_at > :start_date
AND u.user_id IS NOT NULL
{user_filter}
)
SELECT
created_at,
EXTRACT(EPOCH FROM (created_at - prev_request_at)) / 60.0 as interval_minutes
FROM request_intervals
WHERE prev_request_at IS NOT NULL
AND EXTRACT(EPOCH FROM (created_at - prev_request_at)) / 60.0 <= 120
ORDER BY created_at
LIMIT :limit
""")
params: Dict[str, Any] = {"start_date": start_date, "limit": limit}
if user_id:
params["user_id"] = user_id
result = db.execute(sql, params)
rows = result.fetchall()
# 转换为时间线数据点
points = []
users_map: Dict[str, str] = {} # user_id -> username
if include_user_info and not user_id:
for row in rows:
created_at, row_user_id, username, interval_minutes = row
points.append({
"x": created_at.isoformat(),
"y": round(float(interval_minutes), 2),
"user_id": str(row_user_id),
})
if row_user_id and username:
users_map[str(row_user_id)] = username
else:
for row in rows:
created_at, interval_minutes = row
points.append({
"x": created_at.isoformat(),
"y": round(float(interval_minutes), 2)
})
response: Dict[str, Any] = {
"analysis_period_hours": hours,
"total_points": len(points),
"points": points,
}
if include_user_info and not user_id:
response["users"] = users_map
return response