feat(cache): implement model alias resolution with caching

- Add resolve_global_model_by_name_or_alias() supporting direct match and alias lookup
- Support both provider_model_name and provider_model_aliases matching
- Implement caching for resolved models with TTL
- Add conflict detection when alias maps to multiple GlobalModels
- Record resolution metrics: method, cache hits, duration, conflicts
- Fallback to Python-level filtering for non-PostgreSQL databases
- Add cache invalidation methods for GlobalModel
This commit is contained in:
fawney19
2025-12-15 18:13:28 +08:00
parent b0d295c6c9
commit 51b85915d2

View File

@@ -2,6 +2,8 @@
Model 映射缓存服务 - 减少模型查询 Model 映射缓存服务 - 减少模型查询
""" """
import json
import time
from typing import Optional from typing import Optional
from sqlalchemy.orm import Session from sqlalchemy.orm import Session
@@ -9,6 +11,11 @@ from sqlalchemy.orm import Session
from src.config.constants import CacheTTL from src.config.constants import CacheTTL
from src.core.cache_service import CacheService from src.core.cache_service import CacheService
from src.core.logger import logger from src.core.logger import logger
from src.core.metrics import (
model_alias_conflict_total,
model_alias_resolution_duration_seconds,
model_alias_resolution_total,
)
from src.models.database import GlobalModel, Model from src.models.database import GlobalModel, Model
@@ -102,7 +109,9 @@ class ModelCacheService:
# 1. 尝试从缓存获取 # 1. 尝试从缓存获取
cached_data = await CacheService.get(cache_key) cached_data = await CacheService.get(cache_key)
if cached_data: if cached_data:
logger.debug(f"Model 缓存命中(provider+global): {provider_id[:8]}...+{global_model_id[:8]}...") logger.debug(
f"Model 缓存命中(provider+global): {provider_id[:8]}...+{global_model_id[:8]}..."
)
return ModelCacheService._dict_to_model(cached_data) return ModelCacheService._dict_to_model(cached_data)
# 2. 缓存未命中,查询数据库 # 2. 缓存未命中,查询数据库
@@ -120,7 +129,9 @@ class ModelCacheService:
if model: if model:
model_dict = ModelCacheService._model_to_dict(model) model_dict = ModelCacheService._model_to_dict(model)
await CacheService.set(cache_key, model_dict, ttl_seconds=ModelCacheService.CACHE_TTL) await CacheService.set(cache_key, model_dict, ttl_seconds=ModelCacheService.CACHE_TTL)
logger.debug(f"Model 已缓存(provider+global): {provider_id[:8]}...+{global_model_id[:8]}...") logger.debug(
f"Model 已缓存(provider+global): {provider_id[:8]}...+{global_model_id[:8]}..."
)
return model return model
@@ -160,7 +171,7 @@ class ModelCacheService:
@staticmethod @staticmethod
async def invalidate_model_cache( async def invalidate_model_cache(
model_id: str, provider_id: Optional[str] = None, global_model_id: Optional[str] = None model_id: str, provider_id: Optional[str] = None, global_model_id: Optional[str] = None
): ) -> None:
"""清除 Model 缓存 """清除 Model 缓存
Args: Args:
@@ -174,18 +185,207 @@ class ModelCacheService:
# 清除 provider_global 缓存(如果提供了必要参数) # 清除 provider_global 缓存(如果提供了必要参数)
if provider_id and global_model_id: if provider_id and global_model_id:
await CacheService.delete(f"model:provider_global:{provider_id}:{global_model_id}") await CacheService.delete(f"model:provider_global:{provider_id}:{global_model_id}")
logger.debug(f"Model 缓存已清除: {model_id}, provider_global:{provider_id[:8]}...:{global_model_id[:8]}...") logger.debug(
f"Model 缓存已清除: {model_id}, provider_global:{provider_id[:8]}...:{global_model_id[:8]}..."
)
else: else:
logger.debug(f"Model 缓存已清除: {model_id}") logger.debug(f"Model 缓存已清除: {model_id}")
@staticmethod @staticmethod
async def invalidate_global_model_cache(global_model_id: str, name: Optional[str] = None): async def invalidate_global_model_cache(global_model_id: str, name: Optional[str] = None) -> None:
"""清除 GlobalModel 缓存""" """清除 GlobalModel 缓存"""
await CacheService.delete(f"global_model:id:{global_model_id}") await CacheService.delete(f"global_model:id:{global_model_id}")
if name: if name:
await CacheService.delete(f"global_model:name:{name}") await CacheService.delete(f"global_model:name:{name}")
logger.debug(f"GlobalModel 缓存已清除: {global_model_id}") logger.debug(f"GlobalModel 缓存已清除: {global_model_id}")
@staticmethod
async def resolve_global_model_by_name_or_alias(
db: Session, model_name: str
) -> Optional[GlobalModel]:
"""
通过名称或别名解析 GlobalModel带缓存支持别名匹配
查找顺序:
1. 检查缓存
2. 直接匹配 GlobalModel.name
3. 通过别名匹配(查询 Model 表的 provider_model_name 和 provider_model_aliases
Args:
db: 数据库会话
model_name: 模型名称(可以是 GlobalModel.name 或别名)
Returns:
GlobalModel 对象或 None
"""
start_time = time.time()
resolution_method = "not_found"
cache_hit = False
normalized_name = model_name.strip()
if not normalized_name:
return None
cache_key = f"global_model:resolve:{normalized_name}"
try:
# 1. 尝试从缓存获取
cached_data = await CacheService.get(cache_key)
if cached_data:
if cached_data == "NOT_FOUND":
# 缓存的负结果
cache_hit = True
resolution_method = "not_found"
logger.debug(f"GlobalModel 缓存命中(别名解析-未找到): {normalized_name}")
return None
if isinstance(cached_data, dict) and "supported_capabilities" not in cached_data:
# 兼容旧缓存:字段不全时视为未命中,走 DB 刷新
logger.debug(f"GlobalModel 缓存命中但 schema 过旧,刷新: {normalized_name}")
else:
cache_hit = True
resolution_method = "direct_match" # 缓存命中时无法区分原始解析方式
logger.debug(f"GlobalModel 缓存命中(别名解析): {normalized_name}")
return ModelCacheService._dict_to_global_model(cached_data)
# 2. 直接通过 GlobalModel.name 查找
global_model = (
db.query(GlobalModel)
.filter(GlobalModel.name == normalized_name, GlobalModel.is_active == True)
.first()
)
if global_model:
resolution_method = "direct_match"
# 缓存结果
global_model_dict = ModelCacheService._global_model_to_dict(global_model)
await CacheService.set(
cache_key, global_model_dict, ttl_seconds=ModelCacheService.CACHE_TTL
)
logger.debug(f"GlobalModel 已缓存(别名解析-直接匹配): {normalized_name}")
return global_model
# 3. 通过别名匹配(优化:精确查询,避免加载所有 Model
from sqlalchemy import or_
from src.models.database import Provider
# 构建精确的别名匹配条件
# 注意provider_model_aliases 是 JSONB 数组,需要使用 PostgreSQL 的 JSONB 操作符
# 对于 SQLite会在 Python 层面进行过滤
try:
# 尝试使用 PostgreSQL 的 JSONB 查询(更高效)
# 使用 json.dumps 确保正确转义特殊字符,避免 SQL 注入
jsonb_pattern = json.dumps([{"name": normalized_name}])
models_with_global = (
db.query(Model, GlobalModel)
.join(Provider, Model.provider_id == Provider.id)
.join(GlobalModel, Model.global_model_id == GlobalModel.id)
.filter(
Provider.is_active == True,
Model.is_active == True,
GlobalModel.is_active == True,
or_(
Model.provider_model_name == normalized_name,
# PostgreSQL JSONB 查询:检查数组中是否有包含 {"name": "xxx"} 的元素
Model.provider_model_aliases.op("@>")(jsonb_pattern),
),
)
.all()
)
except Exception as e:
# 如果 JSONB 查询失败(如使用 SQLite回退到加载所有活跃 Model 并在 Python 层过滤
logger.debug(
f"JSONB 查询失败,回退到 Python 过滤: {e}",
)
models_with_global = (
db.query(Model, GlobalModel)
.join(Provider, Model.provider_id == Provider.id)
.join(GlobalModel, Model.global_model_id == GlobalModel.id)
.filter(
Provider.is_active == True,
Model.is_active == True,
GlobalModel.is_active == True,
)
.all()
)
# 用于检测别名冲突
matched_global_models = []
# 遍历查询结果进行匹配
for model, gm in models_with_global:
# 检查 provider_model_name 是否匹配
if model.provider_model_name == normalized_name:
matched_global_models.append((gm, "provider_model_name"))
logger.debug(
f"模型名称 '{normalized_name}' 通过 provider_model_name 匹配到 "
f"GlobalModel: {gm.name}"
)
# 检查 provider_model_aliases 是否匹配
if model.provider_model_aliases:
for alias_entry in model.provider_model_aliases:
if isinstance(alias_entry, dict):
alias_name = alias_entry.get("name", "").strip()
if alias_name == normalized_name:
matched_global_models.append((gm, "alias"))
logger.debug(
f"模型名称 '{normalized_name}' 通过别名匹配到 "
f"GlobalModel: {gm.name}"
)
break
# 处理匹配结果
if not matched_global_models:
resolution_method = "not_found"
# 未找到匹配,缓存负结果
await CacheService.set(
cache_key, "NOT_FOUND", ttl_seconds=ModelCacheService.CACHE_TTL
)
logger.debug(f"GlobalModel 未找到(别名解析): {normalized_name}")
return None
# 优先使用 provider_model_name 的直接匹配,其次才是 aliases同级别按名称排序保证确定性
matched_global_models.sort(
key=lambda item: (0 if item[1] == "provider_model_name" else 1, item[0].name)
)
# 记录解析方式
resolution_method = matched_global_models[0][1]
if len(matched_global_models) > 1:
# 检测到别名冲突
unique_models = {gm.id: gm for gm, _ in matched_global_models}
if len(unique_models) > 1:
model_names = [gm.name for gm in unique_models.values()]
logger.warning(
f"别名冲突: 模型名称 '{normalized_name}' 匹配到多个不同的 GlobalModel: "
f"{', '.join(model_names)},使用第一个匹配结果"
)
# 记录别名冲突指标
model_alias_conflict_total.inc()
# 返回第一个匹配的 GlobalModel
result_global_model: GlobalModel = matched_global_models[0][0]
global_model_dict = ModelCacheService._global_model_to_dict(result_global_model)
await CacheService.set(
cache_key, global_model_dict, ttl_seconds=ModelCacheService.CACHE_TTL
)
logger.debug(
f"GlobalModel 已缓存(别名解析): {normalized_name} -> {result_global_model.name}"
)
return result_global_model
finally:
# 记录监控指标
duration = time.time() - start_time
model_alias_resolution_total.labels(
method=resolution_method, cache_hit=str(cache_hit).lower()
).inc()
model_alias_resolution_duration_seconds.labels(method=resolution_method).observe(
duration
)
@staticmethod @staticmethod
def _model_to_dict(model: Model) -> dict: def _model_to_dict(model: Model) -> dict:
"""将 Model 对象转换为字典""" """将 Model 对象转换为字典"""
@@ -243,6 +443,7 @@ class ModelCacheService:
"default_supports_streaming": global_model.default_supports_streaming, "default_supports_streaming": global_model.default_supports_streaming,
"default_supports_extended_thinking": global_model.default_supports_extended_thinking, "default_supports_extended_thinking": global_model.default_supports_extended_thinking,
"default_supports_image_generation": global_model.default_supports_image_generation, "default_supports_image_generation": global_model.default_supports_image_generation,
"supported_capabilities": global_model.supported_capabilities,
"is_active": global_model.is_active, "is_active": global_model.is_active,
"description": global_model.description, "description": global_model.description,
} }
@@ -255,10 +456,17 @@ class ModelCacheService:
name=global_model_dict["name"], name=global_model_dict["name"],
display_name=global_model_dict.get("display_name"), display_name=global_model_dict.get("display_name"),
default_supports_vision=global_model_dict.get("default_supports_vision", False), default_supports_vision=global_model_dict.get("default_supports_vision", False),
default_supports_function_calling=global_model_dict.get("default_supports_function_calling", False), default_supports_function_calling=global_model_dict.get(
"default_supports_function_calling", False
),
default_supports_streaming=global_model_dict.get("default_supports_streaming", True), default_supports_streaming=global_model_dict.get("default_supports_streaming", True),
default_supports_extended_thinking=global_model_dict.get("default_supports_extended_thinking", False), default_supports_extended_thinking=global_model_dict.get(
default_supports_image_generation=global_model_dict.get("default_supports_image_generation", False), "default_supports_extended_thinking", False
),
default_supports_image_generation=global_model_dict.get(
"default_supports_image_generation", False
),
supported_capabilities=global_model_dict.get("supported_capabilities") or [],
is_active=global_model_dict.get("is_active", True), is_active=global_model_dict.get("is_active", True),
description=global_model_dict.get("description"), description=global_model_dict.get("description"),
) )