feat: add daily model statistics aggregation with stats_daily_model table

This commit is contained in:
fawney19
2025-12-20 02:39:10 +08:00
parent e2e7996a54
commit 4e1aed9976
22 changed files with 561 additions and 202 deletions

View File

@@ -13,7 +13,7 @@ from src.api.base.admin_adapter import AdminApiAdapter
from src.api.base.pipeline import ApiRequestPipeline
from src.core.enums import UserRole
from src.database import get_db
from src.models.database import ApiKey, Provider, RequestCandidate, StatsDaily, Usage
from src.models.database import ApiKey, Provider, RequestCandidate, StatsDaily, StatsDailyModel, Usage
from src.models.database import User as DBUser
from src.services.system.stats_aggregator import StatsAggregatorService
from src.utils.cache_decorator import cache_result
@@ -893,69 +893,172 @@ class DashboardDailyStatsAdapter(DashboardAdapter):
})
current_date += timedelta(days=1)
# ==================== 模型统计(仍需实时查询)====================
model_query = db.query(Usage)
if not is_admin:
model_query = model_query.filter(Usage.user_id == user.id)
model_query = model_query.filter(
and_(Usage.created_at >= start_date, Usage.created_at <= end_date)
)
model_stats = (
model_query.with_entities(
Usage.model,
func.count(Usage.id).label("requests"),
func.sum(Usage.total_tokens).label("tokens"),
func.sum(Usage.total_cost_usd).label("cost"),
func.avg(Usage.response_time_ms).label("avg_response_time"),
# ==================== 模型统计 ====================
if is_admin:
# 管理员:使用预聚合数据 + 今日实时数据
# 历史数据从 stats_daily_model 获取
historical_model_stats = (
db.query(StatsDailyModel)
.filter(and_(StatsDailyModel.date >= start_date, StatsDailyModel.date < today))
.all()
)
.group_by(Usage.model)
.order_by(func.sum(Usage.total_cost_usd).desc())
.all()
)
model_summary = [
{
"model": stat.model,
"requests": stat.requests or 0,
"tokens": int(stat.tokens or 0),
"cost": float(stat.cost or 0),
"avg_response_time": (
float(stat.avg_response_time or 0) / 1000.0 if stat.avg_response_time else 0
),
"cost_per_request": float(stat.cost or 0) / max(stat.requests or 1, 1),
"tokens_per_request": int(stat.tokens or 0) / max(stat.requests or 1, 1),
}
for stat in model_stats
]
# 按模型汇总历史数据
model_agg: dict = {}
daily_breakdown: dict = {}
daily_model_stats = (
model_query.with_entities(
func.date(Usage.created_at).label("date"),
Usage.model,
func.count(Usage.id).label("requests"),
func.sum(Usage.total_tokens).label("tokens"),
func.sum(Usage.total_cost_usd).label("cost"),
for stat in historical_model_stats:
model = stat.model
if model not in model_agg:
model_agg[model] = {
"requests": 0, "tokens": 0, "cost": 0.0,
"total_response_time": 0.0, "response_count": 0
}
model_agg[model]["requests"] += stat.total_requests
tokens = (stat.input_tokens + stat.output_tokens +
stat.cache_creation_tokens + stat.cache_read_tokens)
model_agg[model]["tokens"] += tokens
model_agg[model]["cost"] += stat.total_cost
if stat.avg_response_time_ms is not None:
model_agg[model]["total_response_time"] += stat.avg_response_time_ms * stat.total_requests
model_agg[model]["response_count"] += stat.total_requests
# 按日期分组
if stat.date.tzinfo is None:
date_utc = stat.date.replace(tzinfo=timezone.utc)
else:
date_utc = stat.date.astimezone(timezone.utc)
date_str = date_utc.astimezone(app_tz).date().isoformat()
daily_breakdown.setdefault(date_str, []).append({
"model": model,
"requests": stat.total_requests,
"tokens": tokens,
"cost": stat.total_cost,
})
# 今日实时模型统计
today_model_stats = (
db.query(
Usage.model,
func.count(Usage.id).label("requests"),
func.sum(Usage.total_tokens).label("tokens"),
func.sum(Usage.total_cost_usd).label("cost"),
func.avg(Usage.response_time_ms).label("avg_response_time"),
)
.filter(Usage.created_at >= today)
.group_by(Usage.model)
.all()
)
.group_by(func.date(Usage.created_at), Usage.model)
.order_by(func.date(Usage.created_at).desc(), func.sum(Usage.total_cost_usd).desc())
.all()
)
breakdown = {}
for stat in daily_model_stats:
date_str = stat.date.isoformat()
breakdown.setdefault(date_str, []).append(
today_str = today_local.date().isoformat()
for stat in today_model_stats:
model = stat.model
if model not in model_agg:
model_agg[model] = {
"requests": 0, "tokens": 0, "cost": 0.0,
"total_response_time": 0.0, "response_count": 0
}
model_agg[model]["requests"] += stat.requests or 0
model_agg[model]["tokens"] += int(stat.tokens or 0)
model_agg[model]["cost"] += float(stat.cost or 0)
if stat.avg_response_time is not None:
model_agg[model]["total_response_time"] += float(stat.avg_response_time) * (stat.requests or 0)
model_agg[model]["response_count"] += stat.requests or 0
# 今日 breakdown
daily_breakdown.setdefault(today_str, []).append({
"model": model,
"requests": stat.requests or 0,
"tokens": int(stat.tokens or 0),
"cost": float(stat.cost or 0),
})
# 构建 model_summary
model_summary = []
for model, agg in model_agg.items():
avg_rt = (agg["total_response_time"] / agg["response_count"] / 1000.0
if agg["response_count"] > 0 else 0)
model_summary.append({
"model": model,
"requests": agg["requests"],
"tokens": agg["tokens"],
"cost": agg["cost"],
"avg_response_time": avg_rt,
"cost_per_request": agg["cost"] / max(agg["requests"], 1),
"tokens_per_request": agg["tokens"] / max(agg["requests"], 1),
})
model_summary.sort(key=lambda x: x["cost"], reverse=True)
# 填充 model_breakdown
for item in formatted:
item["model_breakdown"] = daily_breakdown.get(item["date"], [])
else:
# 普通用户:实时查询(数据量较小)
model_query = db.query(Usage).filter(
and_(
Usage.user_id == user.id,
Usage.created_at >= start_date,
Usage.created_at <= end_date
)
)
model_stats = (
model_query.with_entities(
Usage.model,
func.count(Usage.id).label("requests"),
func.sum(Usage.total_tokens).label("tokens"),
func.sum(Usage.total_cost_usd).label("cost"),
func.avg(Usage.response_time_ms).label("avg_response_time"),
)
.group_by(Usage.model)
.order_by(func.sum(Usage.total_cost_usd).desc())
.all()
)
model_summary = [
{
"model": stat.model,
"requests": stat.requests or 0,
"tokens": int(stat.tokens or 0),
"cost": float(stat.cost or 0),
"avg_response_time": (
float(stat.avg_response_time or 0) / 1000.0 if stat.avg_response_time else 0
),
"cost_per_request": float(stat.cost or 0) / max(stat.requests or 1, 1),
"tokens_per_request": int(stat.tokens or 0) / max(stat.requests or 1, 1),
}
for stat in model_stats
]
daily_model_stats = (
model_query.with_entities(
func.date(Usage.created_at).label("date"),
Usage.model,
func.count(Usage.id).label("requests"),
func.sum(Usage.total_tokens).label("tokens"),
func.sum(Usage.total_cost_usd).label("cost"),
)
.group_by(func.date(Usage.created_at), Usage.model)
.order_by(func.date(Usage.created_at).desc(), func.sum(Usage.total_cost_usd).desc())
.all()
)
for item in formatted:
item["model_breakdown"] = breakdown.get(item["date"], [])
breakdown = {}
for stat in daily_model_stats:
date_str = stat.date.isoformat()
breakdown.setdefault(date_str, []).append(
{
"model": stat.model,
"requests": stat.requests or 0,
"tokens": int(stat.tokens or 0),
"cost": float(stat.cost or 0),
}
)
for item in formatted:
item["model_breakdown"] = breakdown.get(item["date"], [])
return {
"daily_stats": formatted,