Files
Aether/src/services/cache/model_cache.py

266 lines
10 KiB
Python
Raw Normal View History

2025-12-10 20:52:44 +08:00
"""
Model 映射缓存服务 - 减少模型查询
2025-12-10 20:52:44 +08:00
"""
from typing import Optional
from sqlalchemy.orm import Session
from src.config.constants import CacheTTL
from src.core.cache_service import CacheService
from src.core.logger import logger
from src.models.database import GlobalModel, Model
2025-12-10 20:52:44 +08:00
class ModelCacheService:
"""Model 映射缓存服务"""
# 缓存 TTL- 使用统一常量
CACHE_TTL = CacheTTL.MODEL
@staticmethod
async def get_model_by_id(db: Session, model_id: str) -> Optional[Model]:
"""
获取 Model带缓存
Args:
db: 数据库会话
model_id: Model ID
Returns:
Model 对象或 None
"""
cache_key = f"model:id:{model_id}"
# 1. 尝试从缓存获取
cached_data = await CacheService.get(cache_key)
if cached_data:
logger.debug(f"Model 缓存命中: {model_id}")
return ModelCacheService._dict_to_model(cached_data)
# 2. 缓存未命中,查询数据库
model = db.query(Model).filter(Model.id == model_id).first()
# 3. 写入缓存
if model:
model_dict = ModelCacheService._model_to_dict(model)
await CacheService.set(cache_key, model_dict, ttl_seconds=ModelCacheService.CACHE_TTL)
logger.debug(f"Model 已缓存: {model_id}")
return model
@staticmethod
async def get_global_model_by_id(db: Session, global_model_id: str) -> Optional[GlobalModel]:
"""
获取 GlobalModel带缓存
Args:
db: 数据库会话
global_model_id: GlobalModel ID
Returns:
GlobalModel 对象或 None
"""
cache_key = f"global_model:id:{global_model_id}"
# 1. 尝试从缓存获取
cached_data = await CacheService.get(cache_key)
if cached_data:
logger.debug(f"GlobalModel 缓存命中: {global_model_id}")
return ModelCacheService._dict_to_global_model(cached_data)
# 2. 缓存未命中,查询数据库
global_model = db.query(GlobalModel).filter(GlobalModel.id == global_model_id).first()
# 3. 写入缓存
if global_model:
global_model_dict = ModelCacheService._global_model_to_dict(global_model)
await CacheService.set(
cache_key, global_model_dict, ttl_seconds=ModelCacheService.CACHE_TTL
)
logger.debug(f"GlobalModel 已缓存: {global_model_id}")
return global_model
@staticmethod
async def get_model_by_provider_and_global_model(
db: Session, provider_id: str, global_model_id: str
) -> Optional[Model]:
"""
通过 Provider ID GlobalModel ID 获取 Model带缓存
Args:
db: 数据库会话
provider_id: Provider ID
global_model_id: GlobalModel ID
Returns:
Model 对象或 None
"""
cache_key = f"model:provider_global:{provider_id}:{global_model_id}"
# 1. 尝试从缓存获取
cached_data = await CacheService.get(cache_key)
if cached_data:
logger.debug(f"Model 缓存命中(provider+global): {provider_id[:8]}...+{global_model_id[:8]}...")
return ModelCacheService._dict_to_model(cached_data)
# 2. 缓存未命中,查询数据库
model = (
db.query(Model)
.filter(
Model.provider_id == provider_id,
Model.global_model_id == global_model_id,
Model.is_active == True,
)
.first()
)
# 3. 写入缓存
if model:
model_dict = ModelCacheService._model_to_dict(model)
await CacheService.set(cache_key, model_dict, ttl_seconds=ModelCacheService.CACHE_TTL)
logger.debug(f"Model 已缓存(provider+global): {provider_id[:8]}...+{global_model_id[:8]}...")
return model
@staticmethod
async def get_global_model_by_name(db: Session, name: str) -> Optional[GlobalModel]:
"""
通过名称获取 GlobalModel带缓存
Args:
db: 数据库会话
name: GlobalModel 名称
Returns:
GlobalModel 对象或 None
"""
cache_key = f"global_model:name:{name}"
# 1. 尝试从缓存获取
cached_data = await CacheService.get(cache_key)
if cached_data:
logger.debug(f"GlobalModel 缓存命中(名称): {name}")
return ModelCacheService._dict_to_global_model(cached_data)
# 2. 缓存未命中,查询数据库
global_model = db.query(GlobalModel).filter(GlobalModel.name == name).first()
# 3. 写入缓存
if global_model:
global_model_dict = ModelCacheService._global_model_to_dict(global_model)
await CacheService.set(
cache_key, global_model_dict, ttl_seconds=ModelCacheService.CACHE_TTL
)
logger.debug(f"GlobalModel 已缓存(名称): {name}")
return global_model
@staticmethod
async def invalidate_model_cache(
model_id: str, provider_id: Optional[str] = None, global_model_id: Optional[str] = None
):
"""清除 Model 缓存
Args:
model_id: Model ID
provider_id: Provider ID用于清除 provider_global 缓存
global_model_id: GlobalModel ID用于清除 provider_global 缓存
"""
# 清除 model:id 缓存
await CacheService.delete(f"model:id:{model_id}")
# 清除 provider_global 缓存(如果提供了必要参数)
if provider_id and global_model_id:
await CacheService.delete(f"model:provider_global:{provider_id}:{global_model_id}")
logger.debug(f"Model 缓存已清除: {model_id}, provider_global:{provider_id[:8]}...:{global_model_id[:8]}...")
else:
logger.debug(f"Model 缓存已清除: {model_id}")
@staticmethod
async def invalidate_global_model_cache(global_model_id: str, name: Optional[str] = None):
"""清除 GlobalModel 缓存"""
await CacheService.delete(f"global_model:id:{global_model_id}")
if name:
await CacheService.delete(f"global_model:name:{name}")
logger.debug(f"GlobalModel 缓存已清除: {global_model_id}")
@staticmethod
def _model_to_dict(model: Model) -> dict:
"""将 Model 对象转换为字典"""
return {
"id": model.id,
"provider_id": model.provider_id,
"global_model_id": model.global_model_id,
"provider_model_name": model.provider_model_name,
"provider_model_aliases": getattr(model, "provider_model_aliases", None),
2025-12-10 20:52:44 +08:00
"is_active": model.is_active,
"is_available": model.is_available if hasattr(model, "is_available") else True,
"price_per_request": (
float(model.price_per_request) if model.price_per_request else None
),
"tiered_pricing": model.tiered_pricing,
"supports_vision": model.supports_vision,
"supports_function_calling": model.supports_function_calling,
"supports_streaming": model.supports_streaming,
"supports_extended_thinking": model.supports_extended_thinking,
"supports_image_generation": getattr(model, "supports_image_generation", None),
2025-12-10 20:52:44 +08:00
"config": model.config,
}
@staticmethod
def _dict_to_model(model_dict: dict) -> Model:
"""从字典重建 Model 对象"""
model = Model(
id=model_dict["id"],
provider_id=model_dict["provider_id"],
global_model_id=model_dict["global_model_id"],
provider_model_name=model_dict["provider_model_name"],
provider_model_aliases=model_dict.get("provider_model_aliases"),
2025-12-10 20:52:44 +08:00
is_active=model_dict["is_active"],
is_available=model_dict.get("is_available", True),
price_per_request=model_dict.get("price_per_request"),
tiered_pricing=model_dict.get("tiered_pricing"),
supports_vision=model_dict.get("supports_vision"),
supports_function_calling=model_dict.get("supports_function_calling"),
supports_streaming=model_dict.get("supports_streaming"),
supports_extended_thinking=model_dict.get("supports_extended_thinking"),
supports_image_generation=model_dict.get("supports_image_generation"),
2025-12-10 20:52:44 +08:00
config=model_dict.get("config"),
)
return model
@staticmethod
def _global_model_to_dict(global_model: GlobalModel) -> dict:
"""将 GlobalModel 对象转换为字典"""
return {
"id": global_model.id,
"name": global_model.name,
"display_name": global_model.display_name,
"default_supports_vision": global_model.default_supports_vision,
"default_supports_function_calling": global_model.default_supports_function_calling,
"default_supports_streaming": global_model.default_supports_streaming,
"default_supports_extended_thinking": global_model.default_supports_extended_thinking,
"default_supports_image_generation": global_model.default_supports_image_generation,
2025-12-10 20:52:44 +08:00
"is_active": global_model.is_active,
"description": global_model.description,
}
@staticmethod
def _dict_to_global_model(global_model_dict: dict) -> GlobalModel:
"""从字典重建 GlobalModel 对象"""
global_model = GlobalModel(
id=global_model_dict["id"],
name=global_model_dict["name"],
display_name=global_model_dict.get("display_name"),
default_supports_vision=global_model_dict.get("default_supports_vision", False),
default_supports_function_calling=global_model_dict.get("default_supports_function_calling", False),
default_supports_streaming=global_model_dict.get("default_supports_streaming", True),
default_supports_extended_thinking=global_model_dict.get("default_supports_extended_thinking", False),
default_supports_image_generation=global_model_dict.get("default_supports_image_generation", False),
2025-12-10 20:52:44 +08:00
is_active=global_model_dict.get("is_active", True),
description=global_model_dict.get("description"),
)
return global_model