Files
Aether/src/services/system/stats_aggregator.py

437 lines
17 KiB
Python
Raw Normal View History

2025-12-10 20:52:44 +08:00
"""统计数据聚合服务
实现预聚合统计避免每次请求都全表扫描
"""
import uuid
from datetime import datetime, timedelta, timezone
from typing import Optional
from sqlalchemy import and_, func
from sqlalchemy.orm import Session
from src.core.logger import logger
from src.models.database import (
ApiKey,
RequestCandidate,
StatsDaily,
StatsSummary,
StatsUserDaily,
Usage,
)
from src.models.database import User as DBUser
class StatsAggregatorService:
"""统计数据聚合服务"""
@staticmethod
def aggregate_daily_stats(db: Session, date: datetime) -> StatsDaily:
"""聚合指定日期的统计数据
Args:
db: 数据库会话
date: 要聚合的日期 (会自动转为 UTC 当天开始)
Returns:
StatsDaily 记录
"""
# 确保日期是 UTC 当天开始
day_start = date.replace(hour=0, minute=0, second=0, microsecond=0, tzinfo=timezone.utc)
day_end = day_start + timedelta(days=1)
# 检查是否已存在该日期的记录
existing = db.query(StatsDaily).filter(StatsDaily.date == day_start).first()
if existing:
stats = existing
else:
stats = StatsDaily(id=str(uuid.uuid4()), date=day_start)
# 基础请求统计
base_query = db.query(Usage).filter(
and_(Usage.created_at >= day_start, Usage.created_at < day_end)
)
total_requests = base_query.count()
# 如果没有请求,直接返回空记录
if total_requests == 0:
stats.total_requests = 0
stats.success_requests = 0
stats.error_requests = 0
stats.input_tokens = 0
stats.output_tokens = 0
stats.cache_creation_tokens = 0
stats.cache_read_tokens = 0
stats.total_cost = 0.0
stats.actual_total_cost = 0.0
stats.input_cost = 0.0
stats.output_cost = 0.0
stats.cache_creation_cost = 0.0
stats.cache_read_cost = 0.0
stats.avg_response_time_ms = 0.0
stats.fallback_count = 0
if not existing:
db.add(stats)
db.commit()
return stats
# 错误请求数
error_requests = (
base_query.filter(
(Usage.status_code >= 400) | (Usage.error_message.isnot(None))
).count()
)
# Token 和成本聚合
aggregated = (
db.query(
func.sum(Usage.input_tokens).label("input_tokens"),
func.sum(Usage.output_tokens).label("output_tokens"),
func.sum(Usage.cache_creation_input_tokens).label("cache_creation_tokens"),
func.sum(Usage.cache_read_input_tokens).label("cache_read_tokens"),
func.sum(Usage.total_cost_usd).label("total_cost"),
func.sum(Usage.actual_total_cost_usd).label("actual_total_cost"),
func.sum(Usage.input_cost_usd).label("input_cost"),
func.sum(Usage.output_cost_usd).label("output_cost"),
func.sum(Usage.cache_creation_cost_usd).label("cache_creation_cost"),
func.sum(Usage.cache_read_cost_usd).label("cache_read_cost"),
func.avg(Usage.response_time_ms).label("avg_response_time"),
)
.filter(and_(Usage.created_at >= day_start, Usage.created_at < day_end))
.first()
)
# Fallback 统计 (执行候选数 > 1 的请求数)
fallback_subquery = (
db.query(
RequestCandidate.request_id,
func.count(RequestCandidate.id).label("executed_count"),
)
.filter(
and_(
RequestCandidate.created_at >= day_start,
RequestCandidate.created_at < day_end,
RequestCandidate.status.in_(["success", "failed"]),
)
)
.group_by(RequestCandidate.request_id)
.subquery()
)
fallback_count = (
db.query(func.count())
.select_from(fallback_subquery)
.filter(fallback_subquery.c.executed_count > 1)
.scalar()
or 0
)
# 使用维度统计
unique_models = (
db.query(func.count(func.distinct(Usage.model)))
.filter(and_(Usage.created_at >= day_start, Usage.created_at < day_end))
.scalar()
or 0
)
unique_providers = (
db.query(func.count(func.distinct(Usage.provider)))
.filter(and_(Usage.created_at >= day_start, Usage.created_at < day_end))
.scalar()
or 0
)
# 更新统计记录
stats.total_requests = total_requests
stats.success_requests = total_requests - error_requests
stats.error_requests = error_requests
stats.input_tokens = int(aggregated.input_tokens or 0)
stats.output_tokens = int(aggregated.output_tokens or 0)
stats.cache_creation_tokens = int(aggregated.cache_creation_tokens or 0)
stats.cache_read_tokens = int(aggregated.cache_read_tokens or 0)
stats.total_cost = float(aggregated.total_cost or 0)
stats.actual_total_cost = float(aggregated.actual_total_cost or 0)
stats.input_cost = float(aggregated.input_cost or 0)
stats.output_cost = float(aggregated.output_cost or 0)
stats.cache_creation_cost = float(aggregated.cache_creation_cost or 0)
stats.cache_read_cost = float(aggregated.cache_read_cost or 0)
stats.avg_response_time_ms = float(aggregated.avg_response_time or 0)
stats.fallback_count = fallback_count
stats.unique_models = unique_models
stats.unique_providers = unique_providers
if not existing:
db.add(stats)
db.commit()
logger.info(f"[StatsAggregator] 聚合日期 {day_start.date()} 完成: {total_requests} 请求")
return stats
@staticmethod
def aggregate_user_daily_stats(
db: Session, user_id: str, date: datetime
) -> StatsUserDaily:
"""聚合指定用户指定日期的统计数据"""
day_start = date.replace(hour=0, minute=0, second=0, microsecond=0, tzinfo=timezone.utc)
day_end = day_start + timedelta(days=1)
existing = (
db.query(StatsUserDaily)
.filter(and_(StatsUserDaily.user_id == user_id, StatsUserDaily.date == day_start))
.first()
)
if existing:
stats = existing
else:
stats = StatsUserDaily(id=str(uuid.uuid4()), user_id=user_id, date=day_start)
# 用户请求统计
base_query = db.query(Usage).filter(
and_(
Usage.user_id == user_id,
Usage.created_at >= day_start,
Usage.created_at < day_end,
)
)
total_requests = base_query.count()
if total_requests == 0:
stats.total_requests = 0
stats.success_requests = 0
stats.error_requests = 0
stats.input_tokens = 0
stats.output_tokens = 0
stats.cache_creation_tokens = 0
stats.cache_read_tokens = 0
stats.total_cost = 0.0
if not existing:
db.add(stats)
db.commit()
return stats
error_requests = (
base_query.filter(
(Usage.status_code >= 400) | (Usage.error_message.isnot(None))
).count()
)
aggregated = (
db.query(
func.sum(Usage.input_tokens).label("input_tokens"),
func.sum(Usage.output_tokens).label("output_tokens"),
func.sum(Usage.cache_creation_input_tokens).label("cache_creation_tokens"),
func.sum(Usage.cache_read_input_tokens).label("cache_read_tokens"),
func.sum(Usage.total_cost_usd).label("total_cost"),
)
.filter(
and_(
Usage.user_id == user_id,
Usage.created_at >= day_start,
Usage.created_at < day_end,
)
)
.first()
)
stats.total_requests = total_requests
stats.success_requests = total_requests - error_requests
stats.error_requests = error_requests
stats.input_tokens = int(aggregated.input_tokens or 0)
stats.output_tokens = int(aggregated.output_tokens or 0)
stats.cache_creation_tokens = int(aggregated.cache_creation_tokens or 0)
stats.cache_read_tokens = int(aggregated.cache_read_tokens or 0)
stats.total_cost = float(aggregated.total_cost or 0)
if not existing:
db.add(stats)
db.commit()
return stats
@staticmethod
def update_summary(db: Session) -> StatsSummary:
"""更新全局统计汇总
汇总截止到昨天的所有数据
"""
now = datetime.now(timezone.utc)
today = now.replace(hour=0, minute=0, second=0, microsecond=0)
cutoff_date = today # 不含今天
# 获取或创建 summary 记录
summary = db.query(StatsSummary).first()
if not summary:
summary = StatsSummary(id=str(uuid.uuid4()), cutoff_date=cutoff_date)
# 从 stats_daily 聚合历史数据
daily_aggregated = (
db.query(
func.sum(StatsDaily.total_requests).label("total_requests"),
func.sum(StatsDaily.success_requests).label("success_requests"),
func.sum(StatsDaily.error_requests).label("error_requests"),
func.sum(StatsDaily.input_tokens).label("input_tokens"),
func.sum(StatsDaily.output_tokens).label("output_tokens"),
func.sum(StatsDaily.cache_creation_tokens).label("cache_creation_tokens"),
func.sum(StatsDaily.cache_read_tokens).label("cache_read_tokens"),
func.sum(StatsDaily.total_cost).label("total_cost"),
func.sum(StatsDaily.actual_total_cost).label("actual_total_cost"),
)
.filter(StatsDaily.date < cutoff_date)
.first()
)
# 用户/API Key 统计
total_users = db.query(func.count(DBUser.id)).scalar() or 0
active_users = (
db.query(func.count(DBUser.id)).filter(DBUser.is_active.is_(True)).scalar() or 0
)
total_api_keys = db.query(func.count(ApiKey.id)).scalar() or 0
active_api_keys = (
db.query(func.count(ApiKey.id)).filter(ApiKey.is_active.is_(True)).scalar() or 0
)
# 更新 summary
summary.cutoff_date = cutoff_date
summary.all_time_requests = int(daily_aggregated.total_requests or 0)
summary.all_time_success_requests = int(daily_aggregated.success_requests or 0)
summary.all_time_error_requests = int(daily_aggregated.error_requests or 0)
summary.all_time_input_tokens = int(daily_aggregated.input_tokens or 0)
summary.all_time_output_tokens = int(daily_aggregated.output_tokens or 0)
summary.all_time_cache_creation_tokens = int(daily_aggregated.cache_creation_tokens or 0)
summary.all_time_cache_read_tokens = int(daily_aggregated.cache_read_tokens or 0)
summary.all_time_cost = float(daily_aggregated.total_cost or 0)
summary.all_time_actual_cost = float(daily_aggregated.actual_total_cost or 0)
summary.total_users = total_users
summary.active_users = active_users
summary.total_api_keys = total_api_keys
summary.active_api_keys = active_api_keys
db.add(summary)
db.commit()
logger.info(f"[StatsAggregator] 更新全局汇总完成,截止日期: {cutoff_date.date()}")
return summary
@staticmethod
def get_today_realtime_stats(db: Session) -> dict:
"""获取今日实时统计(用于与预聚合数据合并)"""
now = datetime.now(timezone.utc)
today = now.replace(hour=0, minute=0, second=0, microsecond=0)
base_query = db.query(Usage).filter(Usage.created_at >= today)
total_requests = base_query.count()
if total_requests == 0:
return {
"total_requests": 0,
"success_requests": 0,
"error_requests": 0,
"input_tokens": 0,
"output_tokens": 0,
"cache_creation_tokens": 0,
"cache_read_tokens": 0,
"total_cost": 0.0,
"actual_total_cost": 0.0,
}
error_requests = (
base_query.filter(
(Usage.status_code >= 400) | (Usage.error_message.isnot(None))
).count()
)
aggregated = (
db.query(
func.sum(Usage.input_tokens).label("input_tokens"),
func.sum(Usage.output_tokens).label("output_tokens"),
func.sum(Usage.cache_creation_input_tokens).label("cache_creation_tokens"),
func.sum(Usage.cache_read_input_tokens).label("cache_read_tokens"),
func.sum(Usage.total_cost_usd).label("total_cost"),
func.sum(Usage.actual_total_cost_usd).label("actual_total_cost"),
)
.filter(Usage.created_at >= today)
.first()
)
return {
"total_requests": total_requests,
"success_requests": total_requests - error_requests,
"error_requests": error_requests,
"input_tokens": int(aggregated.input_tokens or 0),
"output_tokens": int(aggregated.output_tokens or 0),
"cache_creation_tokens": int(aggregated.cache_creation_tokens or 0),
"cache_read_tokens": int(aggregated.cache_read_tokens or 0),
"total_cost": float(aggregated.total_cost or 0),
"actual_total_cost": float(aggregated.actual_total_cost or 0),
}
@staticmethod
def get_combined_stats(db: Session) -> dict:
"""获取合并后的统计数据(预聚合 + 今日实时)"""
summary = db.query(StatsSummary).first()
today_stats = StatsAggregatorService.get_today_realtime_stats(db)
if not summary:
# 如果没有预聚合数据,返回今日数据
return today_stats
return {
"total_requests": summary.all_time_requests + today_stats["total_requests"],
"success_requests": summary.all_time_success_requests
+ today_stats["success_requests"],
"error_requests": summary.all_time_error_requests + today_stats["error_requests"],
"input_tokens": summary.all_time_input_tokens + today_stats["input_tokens"],
"output_tokens": summary.all_time_output_tokens + today_stats["output_tokens"],
"cache_creation_tokens": summary.all_time_cache_creation_tokens
+ today_stats["cache_creation_tokens"],
"cache_read_tokens": summary.all_time_cache_read_tokens
+ today_stats["cache_read_tokens"],
"total_cost": summary.all_time_cost + today_stats["total_cost"],
"actual_total_cost": summary.all_time_actual_cost + today_stats["actual_total_cost"],
"total_users": summary.total_users,
"active_users": summary.active_users,
"total_api_keys": summary.total_api_keys,
"active_api_keys": summary.active_api_keys,
}
@staticmethod
def backfill_historical_data(db: Session, days: int = 365) -> int:
"""回填历史数据(首次部署时使用)
Args:
db: 数据库会话
days: 要回填的天数
Returns:
回填的天数
"""
now = datetime.now(timezone.utc)
today = now.replace(hour=0, minute=0, second=0, microsecond=0)
# 找到最早的 Usage 记录
earliest = db.query(func.min(Usage.created_at)).scalar()
if not earliest:
logger.info("[StatsAggregator] 没有历史数据需要回填")
return 0
# 计算需要回填的日期范围
earliest_date = earliest.replace(hour=0, minute=0, second=0, microsecond=0)
start_date = max(earliest_date, today - timedelta(days=days))
count = 0
current_date = start_date
while current_date < today:
StatsAggregatorService.aggregate_daily_stats(db, current_date)
count += 1
current_date += timedelta(days=1)
# 更新汇总
if count > 0:
StatsAggregatorService.update_summary(db)
logger.info(f"[StatsAggregator] 回填历史数据完成,共 {count}")
return count